
30	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

SOFTWARE REUSE and family-based
production strategies, including soft-
ware product lines (SPLs),1 make soft-
ware engineering more effective and
productive. Such strategies let software
designers and engineers analyze and
implement systems collectively rather
than separately, automating more of

the software life cycle through reus-
able domain assets such as application
blocks, frameworks, patterns, domain-
specific languages (DSLs), generators,
and tools.

Domains ranging from consumer
electronics to avionics have successfully
applied such concepts (see www.splc.

net/fame.html). However, several fac-
tors have hindered digital game devel-
opers from doing the same:

•	 the engineering is the hardest part
of game development;2

•	 the field is characterized by ad hoc,
low-level development;3

•	 game developers struggle with inte-
grating components and managing
their architectural complexity;4 and

•	 game development isn’t the same
as software development, so tradi-
tional requirements engineering isn’t
applicable, and the popular concept
of “game genres” can be misleading
in an SPL process because they’re
ambiguous and imprecise.5

Yet expectations for digital games
are extremely high,4 and game devel-
opment involves many technical and
design risks. Each new wave of games
implements unproven technical features
without knowing how players will re-
act. Game developers and designers thus
should focus on such risks and on fea-
tures that make the game unique; they
shouldn’t waste their time repeatedly
performing menial and routine tasks.

To enable game developers and de-
signers to successfully apply SPL pro-
cesses to game development and over-
come the aforementioned challenges,
we describe a practical SPL-based ap-
proach for analyzing digital game do-
mains and implementing core domain
assets—an area that other SPL and do-
main-engineering processes don’t com-
prehensively address. Our approach
should help game developers create
DSLs and generators, key SPL compo-
nents still underexplored in the context
of game development.

Beyond Game Engines
Game engines are a state-of-the-art re-
source for game development. They sup-

Improving
Digital Game
Development
with Software
Product Lines
Andre W.B. Furtado, Andre L.M. Santos, and Geber L. Ramalho,
Federal University of Pernambuco

Eduardo Santana de Almeida, Federal University of Bahia

// A systematic process for exploiting software product lines

for game development offers both domain-specific languages

and generators streamlined for game subdomains. //

FOCUS: ENGINEERING FUN

 SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE 31

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

port common foundations such as tex-
ture rendering, world management, and
event handling. However, understanding
a game engine’s architecture, interac-
tion paradigm, and programming pecu-
liarities usually isn’t simple or intuitive.
Furthermore, the development environ-
ments used with game engines might
not provide all the desired development
foundations for specifi c game domains.

Yet game engines could play a more
important role in automating game de-
velopment. Consider Don Roberts and
Ralph Johnson’s recurring pattern on
automating software development:6

 1. identify reusable abstractions for a
domain and document patterns for
using abstractions;

 2. develop runtimes and frame-
works to codify abstractions and
patterns; and

 3. defi ne languages and build tools
to support the runtime and frame-
works, such as (visual) editors and
compilers.

Game engines are situated in the
second phase of this “pattern-run-
time-language” workfl ow. Although a
framework such as a game engine can
reduce the cost of developing an appli-
cation by an order of magnitude, map-
ping the requirements of each product
variant onto the framework is a non-
trivial problem, generally requiring the
expertise of an architect or senior de-
veloper.6 Language-based tools (phase
three) automate this mapping step by
capturing variations in requirements
via language expressions and encapsu-
lating the abstractions a framework de-
fi nes. This helps users think in terms of
the abstractions and generates frame-
work completion code. Such tools
also promote agility by expressing do-
main concepts (such as a digital game’s
screens and entities) in a way that cus-
tomers and users better understand and
by propagating changes to implementa-
tions more quickly.

Rather than simply disappearing,
multimedia APIs such as DirectX and

OpenGL became the foundation upon
which game developers built more ab-
stract layers, such as game engines
themselves. Similarly, game engines
could become the foundation for more
abstract and expressive layers, such
as DSLs and generators, integrated
with the development environment.
This could help end the current hiatus
in game development, caused by the
fact that easy-to-use script languages
and click-n-play tools, such as Game
Maker and RPG Maker, aren’t fl exible
enough, while game engines are power-
ful but complex (see Figure 1a).

Domain-Specifi c
Game Development
SPL processes often target software de-
velopment in general, but they can be
more effective when bound by macro-
domains. So, we conceived a domain-
specifi c approach for game development
that uses game domain analysis to cre-
ate core assets—such as DSLs and ref-
erence architectures—for a game SPL.

High �exibility
(powerful)

Low �exibility
(limited)

High abstraction
(simple)

(b)(a)

Samples

Feature model

Reference architecture

Sample
implementation

Refactoring/
abstractionSample

implementation

Samples

Problem
domain

Solution
domain

Low abstraction
(complex)

Game engines

Click-n-play tools

?

Domain-speci­c languages

Generators

FIGURE 1. Automating game development. (a) Game development’s current hiatus, caused by a lack of simple yet powerful tools, and

(b) a domain-speci� c approach that creates core domain assets for a game software product line (SPL).

32	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: ENGINEERING FUN

The proposal builds on strict top-down
and bottom-up domain-engineering
approaches, combining them in a spi-
ral and iterative edge-center process. In
other words, the process avoids the risk
of a big upfront investment in any edge
(problem or solution domain) by having
game developers and designers work
through such domains in iterations, in-
crementally (see Figure 1b).

Avoiding a strict top-down ap-
proach lets game developers and de-
signers identify abstractions from the
product code, so the generated code
isn’t just a convenient, direct output
from DSL constructs, like a serializa-
tion. Avoiding a strict bottom-up ap-
proach ensures DSLs aren’t solely based
on code template expressions, architec-
tural abstractions, and refactorings. It
also improves abstraction by enabling
the DSLs’ syntaxes and semantics to be
more than just a (graphical) representa-
tion of the code.

The proposed approach also consid-
ers the peculiarities of digital games.
For example, it employs game engines
as a vital piece in defining a reference
architecture. Moreover, the approach

helps developers and designers explore
numerous game samples, which are
widely available thanks to the diversity
of platforms, an intensive prototyping
culture, an abundance of user-gener-
ated content, and player nostalgia.

Here, we outline our approach in a
linear form, but practitioners should
perform the activities in iterations—
analyzing samples, extracting features,
inspecting code, and modeling or im-
plementing assets in increments.

Envision the Game Domain
The first task of planning a digital game
SPL should be to envision the domain.
Instead of relying solely on the concept
of game genres, the game SPL design-
ers should describe expectations for
predefined core game dimensions that
aren’t overly specific or generic: player
(number of players, co-playing modes,
score system, and so on), graphics, flow
(levels, screens, rooms, and so on), enti-
ties, events, input, audio, physics, AI,
networking, and any custom dimension
for the target game domain, such as the
battle system for a role-playing game
(RPG) domain.

Analyze the Game Domain
Domain analysis is the process of iden-
tifying, capturing, and organizing the
information used in developing soft-
ware systems and making that informa-
tion reusable for new systems.7 Here,
we offer some guidelines for game do-
main analysis.

Identify emotion-based requirements.

When modeling the problem domain,
identify the emotion-based require-
ments (such as immersion, surprise, and
nostalgia) and handle them through ex-
perimentation and prototyping. How-
ever, keep in mind that nonemotional
requirements can still exist for games
(see Table 1).

Select domain samples. Taking into ac-
count the expectations defined for the
core game dimensions and nonemo-
tional requirements, select domain
samples by identifying existing, un-
der development, or anticipated games
that belong to the target domain. Select
the most representative games, such as
those re-released through “remakes,”
those that have numerous sequels, or

TA
B

L
E

 1 Example of nonemotional game features traceability.

Problem domain features Solution domain features

Allow breaks to avoid having players lose progress Save/load, pause/resume, “continue”

Register player performance High-scores table, achievements

Provide social interaction Multiplayer mode (online and local)

Establish a player identity Avatars, game elements customization

Provide availability (to play independent of time/
space)

Mobile platforms, digital convergence
(multidevice experience for the same game)

Ensure readiness to play Intuitive/one-click installers, zero-deployment games

Offer replay value Multiple narrative paths, multiplayer support, achievements

Establish a low learning curve Tutorials, scaffolding (hints and tips that stop being offered as players acquire experience)

Advertise a specific brand
(typical for advergames)

Hooks for brand insertion, which can end up as patterns, such as the background of “loading”
screens, midaction fly-outs, specific areas or canvas designated for branding, and so on

Teach or train the player on a given real-world
topic

Missions and problem-solving challenges that incorporate the topic contents, notorious in serious
games and educative games

	 SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE � 33

those with broad industry and media
recognition.

Define and refine game domain features.

Analyze the samples and evolve the
core game dimensions to domain-spe-
cific features. We recommend feature
modeling to express the commonality
and variability extracted from sam-
ples.8 When analyzing game sequels
(such as Pac-Man and Ms. Pac-Man),
it’s possible to consider unique sequel
features as extensions or variations of
the original game.

Explore “locked” game features. To
explore locked game features (func-
tionalities hidden until players make
enough progress), consider enabling
“god modes,” activating “cheat codes,”
exploring official and “underground”
literature related to the game (such as
the World of Warcraft wiki), and inter-
viewing experienced players.

Create subdomains. Consider partition-
ing the target game domain into sub-
domains (for example, partitioning a
broader arcade domain into shooter
and maze subdomains). The individual
analyses of more specific subdomains
lead to more expressive and effective
SPL assets, such as DSLs.

Anticipate future features. Game do-
main experts and analysts can extend
the feature model with innovative fea-
tures to enhance the game SPL. Recom-
mended feature anticipation techniques
include retrospection, trend analysis,
and the morphologic box,9 whose un-
usual and unforeseen combinations of
values cope with creativity—an essen-
tial component of game design.

Assess the Automation Potential
By grouping analyzed features into
cohesive sets, game SPL analysts can
identify subdomains to assess their au-
tomation potential. Analysts should
break down identified subdomains into

even more fine-grained, atomic sub-
domains—for example, the transition
between game screens, the collision
relationship between game entities, or
graphical representations of heads-up
displays.

When identifying game subdomains,
practitioners should

•	 consider core game dimensions and

the features directly derived and
elicited from them as subdomain
candidates;

•	 rely on the knowledge of domain
experts to further break down the
game samples’ characteristics;

•	 investigate how types (such as
classes, interfaces, and enumera-
tions) are modularized in sample
implementations and game en-
gines—modules and submodules
can provide hints on possible sub-
domain candidates; and

•	 investigate repetition in sample im-
plementations,10 such as design pat-
terns or a piece of design or code
that repeatedly appears in a sample
or across samples, even if the repeti-
tion instances aren’t identical.

Finally, game SPL designers should
prioritize subdomain candidates for au-
tomation, considering their

•	 previous automation evidence (mod-
eling languages and tools, such as
generators) and how easy it is to in-
tegrate them into the game SPL;

•	 coverage (the amount of features a
given subdomain covers);

•	 productivity (developer effort saved
by automating the subdomain); and

•	 abstraction (how much less error-
prone the subdomain will be after
automation).

In contrast with the approach’s high-
level game domain analysis, which oc-
curs in the problem domain, some of
these guidelines require lower-level
technical tasks, which happen in the so-
lution domain: investigating code sam-

ples to extract patterns and templates,
implementing prototypes for antici-
pated features, and creating a reference
architecture. But such low-level tasks
shouldn’t be delayed until after domain
analysis, as in waterfall processes. Both
edges (the problem and solution do-
mains) meet halfway, leading to more
effective core assets.

Create Application Assets
Application core assets (such as com-
ponents, frameworks, and prototypi-
cal applications) are building blocks
for SPL products. In the context of
game SPLs, we suggest building a do-
main-specific game architecture from
the composition and adaptation of the
game engine (or engines) created or al-
ready used for the target game domain.
As opposed to the architecture Eelke
Folmer proposed (see the “Related
Work in Game Development” sidebar),4
we don’t believe in a one-size-fits-all
game architecture. In other words, ref-
erence game architectures must be built
for their target (sub)domains—but not
from scratch.

When building the reference game
architecture, practitioners should pro-
mote it to a domain framework,11
which is a reusable SPL component

We don’t believe in a one-size-fits-all game
architecture. Reference game architectures
must be built for their target (sub)domains.

34	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: ENGINEERING FUN

that encapsulates mandatory (com-
mon) subdomain features identified
during domain analysis. The domain
framework is consumed by artifacts
generated from diagrams (DSLs) used
to model the variable subdomain fea-
tures. Promoting a game engine and
its encompassing reference architecture
into an SPL asset, however, might not
be a straightforward task, unfolding
into different possibilities: reusing the
game engine as is, implementing one
from scratch, or creating an adapter
layer.

Ultimately, a game engine promoted
to a domain framework should support
three important requirements. The first
one is the target game domain’s vari-
ability space, so that a game engine

predicts variation points and effec-
tively supports their implementation.
The second one is framework comple-
tion—that is, the game engine exposes
an interface that’s expressive and con-
cise enough so that code that consumes
(configures) it can be easily generated
via model-driven development (MDD)
techniques. Finally, the promoted game
engine should be extensible, so that
developers can complement the game
SPL’s built-in feature set with custom
code.

Create Development Assets
Development core assets, such as DSLs,
are integrated by SPL processes into a
highly customized development envi-
ronment to provide guidance, automa-

tion, and abstraction to the product
development. To create DSLs in the
context of game SPLs, game SPL de-
signers should characterize the variabil-
ity of the identified game subdomains,
previously prioritized for automation.
The variability spectrum ranges from
routine configuration (that is, config-
uring a product using simpler, tree-like
DSLs, such as wizards or feature-based
configuration, to select a subset of fea-
tures) to creative construction (which
involves using textual or visual lan-
guages to create complex, graph-like
DSLs, such as programs and models).12

The characterized variability helps
game SPL designers to create the sub-
domain DSL’s abstract and concrete
syntaxes. Then they can define trans-

RELATED WORK IN GAME DEVELOPMENT
We can find some level of domain-specific development in game
engines because they evolved from APIs into a more comprehensive
toolset encompassing script languages, such as UnrealScript.
However, such languages are still at a fairly low programming level,
raising concerns as to the level of abstraction they offer.1

Eelke Folmer applied component-based development to game
development, establishing a commercial off-the-shelf approach
in which a layered reference architecture is suggested for all
digital games, with limited reuse areas such as graphics and
sound.2 However, his process is strictly bottom-up—it doesn’t
consider the problem domain and related tasks such as domain
analysis.

Jeroen Dobbe introduced a new domain-specific language
for computer games, hosted in its own special environment
and integrated with a proprietary game engine.1 His experience
provides lessons learned on applying DSLs to digital games but
doesn’t define a process or guidelines for performing domain-
specific game development.

Emanuel Reyno and José Cubel proposed using model-driven
development through platform-independent models and platform-
specific models to create prototype 2D platform games for PCs.3
They acknowledge that UML diagrams are more familiar to
software engineers than game developers.

Frank Hernandez and Francisco Ortega developed a DSL
instance for modeling 2D games.4 Their work diverges from ours
on two fronts: they believe the 2D gaming domain is specific
enough to be expressed by a single DSL and that game engines

should be consumed as is by the generated code (instead of
adaptation layers).

Sonja Maier and Daniel Volk5 discuss first findings of a case
study in which language workbench concepts are applied to
create level editors for “classic” games, such as Pac-Man. The
authors aren’t concerned with defining a process for creating
game factories; rather, they focus on a specific subdomain (level
editing) in which only one DSL is created per “factory.”

Finally, Leandro Nascimento6 defined a practical approach for
implementing core assets in a mobile game software product line.

References
	 1.	 J. Dobbe, “A Domain-Specific Language for Computer Games,” MSc

dissertation, Dept. of Software Technology, Delft Univ. of Technology, 2007.
	 2.	 E. Folmer, “Component Based Game Development: A Solution to

Escalating Costs and Expanding Deadlines?” Proc. 10th Int’l ACM SIGSOFT
Symp. Component-Based Software Eng., Springer, 2007, pp. 66–73.

	 3.	 E.M. Reyno and G.A.C. Cubel, “Model-Driven Game Development: 2D
Platform Game Prototyping,” Proc. Game-On 2008, 9th Int’l Conf.
Intelligent Games and Simulation, EUROSIS, 2008, pp. 5–7.

	 4.	 F.E. Hernandez and R.R. Ortega, “Eberos GML2D: A Graphical
Domain-Specific Language for Modeling 2D Video Games,” Proc. 10th
SPLASH Workshop on Domain-Specific Modeling, Aalto-Print, 2010;
www.dsmforum.org/events/DSM10/papers.html.

	 5.	 S. Maier and D. Volk, “Facilitating Language-Oriented Game Development
by the Help of Language Workbenches,” Proc. 2008 Conf. Future Play:
Research, Play, Share, ACM Press, 2008, pp. 224–227.	

	 6.	 L.M. Nascimento, “Core Assets Development in Software Product Lines:
Towards a Practical Approach for the Mobile Game Domain,” MSc dis
sertation, Center of Informatics, Federal Univ. of Pernambuco, 2008.

 SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE 35

formations (generators) by investigat-
ing mappings from elements in the do-
main framework (game engine) code to
elements in the DSLs. During this in-
spection, new information might need
to be included in the original DSLs be-
fore they can be used as inputs to the
transformations (for example, a game
screen might introduce details such as
the main character’s start position).
Once the DSL is refi ned, the game SPL
designer produces a template-based
code generator by migrating the code
from the reference implementation to
templates, annotating it with tags and
scriptlets that bind the code to the DSL.

Finally, game SPL designers should
design and plan the development en-
vironment integration, including the
project and build system, custom prop-
erty editors, semantic validators (to
catch modeling errors), and contextual-
ized automated guidance (suggestions
and guidance on game development ac-
tivities to be performed in a particular
context).

An SPL for 2D
Arcade Games
We used our proposed approach to

create game SPLs targeted at different
game macrodomains, such as isomet-
ric adventure games, RPG games, mo-
bile touch-based games, and 2D arcade
games. Here, we discuss ArcadEx, an
SPL we created for 2D arcade games.

Implementation
The core game dimensions defi ned for
ArcadEx describes it as a game SPL fo-
cused on single or multiplayer 2D ar-
cade games, with short levels composed
by screens containing entities and
walls. By using keyboard or gamepad-
based controllers, players control main
characters who collide with other enti-
ties such as nonplayer characters and
items.

The ArcadEx implementation fol-
lowed the proposed edge-center it-
erations. In the high level, each itera-
tion included a round of game domain
analysis, focused on detailing the fea-
ture model of one or a couple of priori-
tized game subdomains at a time. For
instance, Figure 2a shows the feature
model of the “graphics” concept, re-
sulting from the fi rst iterations. Even-
tually, we built a feature model with
almost 150 features to describe the

domain’s commonality and variability.
We analyzed approximately 30 games,
with each analysis taking, on aver-
age, two to four hours. Our domain-
analysis guidelines were especially use-
ful for discarding samples and fi ltering
out confl icting features.

In the lower level, we investigated
the most representative samples of each
iteration subdomain from an imple-
mentation perspective. As Figure 2b
shows, we used the FlatRedBall game
engine, which consumes the XNA
framework, to implement samples.
We gradually promoted the engine to
a domain framework, implementing
and expanding an adaptation layer,
ArcadEngine, to cover each iteration
subdomain. ArcadEngine not only
complements Flat RedBall with specifi c
features of the target ArcadEx game
domain but also enables the game en-
gine to be more seamlessly consumed
by code generated from models. In
other words, ArcadEngine moves com-
plexity away from the code generators.

Finalizing each iteration, the high-
and low-level work met halfway, cul-
minating with the design and imple-
mentation of one or more DSLs and

Code
generators

ArcadEx models

ArcadEngine

Generated code

Extends/implements

Custom code

[1 ..1]

(a) (b)

Graphics

Resolution

HeightWidth
DisplayDataFull screenWindowed

[1 ..1]

RadarTextual

BarIcon

Level infoScore

Numerical property

High score

Particle systemHUDDisplay mode

FIGURE 2. The ArcadEx implementation. (a) A feature model subset for the ArcadEx game SPL (the “graphics” concept) and (b) ArcadEx

core assets.

36 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: ENGINEERING FUN

generators for the iteration subdomain.
At the end of the fi rst ArcadEx itera-
tion, game developers had a DSL for
modeling screen transition behavior,
but they still had to implement all other
aspects of the game manually. Subse-
quent iterations then conceived new
(or improved existing) DSLs, focusing
subdomains such as entity defi nition,
collision interest, background music
management, and keyboard-to-game-
pad input mapping. Each DSL includes
extensibility hooks to enable custom
code to complement the ArcadEngine
adapter and directly access FlatRedBall
or XNA. We integrated the DSLs with
the Microsoft Visual Studio develop-
ment environment (see Figure 3).

Evaluation
Since ArcadEx’s inception, we’ve been
collecting data to assess its effective-
ness. Initially, games developed with
the fi rst version of ArcadEx had 75 per-
cent of their code automatically gener-
ated by the SPL. We had to implement

the remaining 25 percent as SPL exten-
sions because some subdomains weren’t
initially automated, such as wall colli-
sions, score-based events, and initial-
ization of entity properties with ran-
dom values. Once we retrofi tted such
extensions into subsequent versions of
the game SPL, the number approached
100 percent. If new games have unan-
ticipated variability—that is, if they re-
quire behaviors not supported as built-
in by the game SPL—then the number
will drop again.

ArcadEx games are developed in
one-fi fth to one-fourth of the time re-
quired to develop them using the game
engine alone. Such results are in line
with MDD improvements measured for
other areas.13

The reduced level of fl exibility in the
behavior of the generated games as is
(with no extensions), due to increased
abstraction levels, is the approach’s ma-
jor drawback. However, as opposed to
click-n-play tools, extensibility hooks
with full development-environment

support and integration are provided
for custom behaviors.

A valid concern about using SPL
techniques in the digital game domain
is whether they threaten the generated
games’ creativity and distinctness. So
far, our results actually indicate that
automating the routine and error-prone
activities in the game development pro-
cess (the “commonality”) let us spend
more time and resources on the do-
main’s variability and extension points,
contributing to the uniqueness of each
title. In fact, game engines have been
responsible for myriad creative, unique
industrial titles. Similarly, we don’t
suggest end-to-end game generators;
rather, we recommend layering SPLs
and DSLs on top of game engines so
that the software reuse is more struc-
tured, effective, and intuitive.

O ur approach doesn’t con-
stitute a complete domain-
engineering process per se,

(a)

(b)

FIGURE 3. Some of the ArcadEx domain-speci� c languages (DSLs): (a) ScreenFlowDsl and (b) EntityDe� nitionDsl.

 SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE 37

with a well-defi ned and comprehensive
set of roles, tasks, inputs, and outputs.
Moreover, we don’t comprehensively
evaluate how current generic domain-
engineering tasks fi t into digital game
development, or how the approach
compares to click-n-play tools for sim-
pler game domains.

However, given the peculiarities of
digital games, automating game do-
mains shouldn’t simply employ soft-
ware engineering techniques as is, in
special SPLs, DSLs, and domain engi-
neering. Using a systematic domain-
specifi c development approach stream-
lined to digital games, game developers
and designers can envision and analyze
target game domains and bridge the
analysis to core assets in a game SPL.
Benefi ts include reduced complexity for
consuming game engines, the break-
down of game development tasks into
more granular and automatable chunks,
the incremental delivery of value for
prioritized game subdomains, domain-
specifi c assets tailored to the unique
characteristics of the envisioned family
of games, and increased confi dence that
the resulting games comply with the
original vision and requirements.

Acknowledgments
This work was partially supported by the
National Institute of Science and Technology
for Software Engineering (INES; www.ines.
org.br), funded by CNPq (Conselho Nacional
de Desenvolvimento Científi co e Tecnológi-
co) and FACEPE (Fundação de Amparo à
Ciência e Tecnologia), grants 573964/2008-4
and APQ-1037-1.03/08.

References
 1. P. Clements and L.M. Northrop, Software

Product Lines: Practices and Patterns, Ad-
dison Wesley, 2001.

 2. J. Blow, “Game Development: Harder Than
You Think,” ACM Queue, vol. 1, no. 10,
2004, pp. 28–37.

 3. E.M. Reyno and G.A.C. Cubel, “Model-Driv-
en Game Development: 2D Platform Game
Prototyping,” Proc. Game-On 2008, 9th
Int’l Conf. Intelligent Games and Simulation,
EUROSIS, 2008, pp. 5–7.

 4. E. Folmer, “Component Based Game Develop-
ment: A Solution to Escalating Costs and
Expanding Deadlines?” Proc. 10th Int’l ACM

SIGSOFT Symp. Component-Based Software
Eng., Springer, 2007, pp. 66–73.

 5. A. Lindley, “Game Taxonomies: A High Level
Framework for Game Analysis and Design,”
GamaSutra.com, 3 Oct. 2003; http://bit.
ly/2oGHtN.

 6. D. Roberts and R. Johnson, “Patterns for
Evolving Frameworks,” Pattern Languages of
Program Design 3, Addison-Wesley, 1997, pp.
471–486.

 7. R. Prieto-Diaz, “Domain Analysis: An In-
troduction,” Proc. ACM SIGSOFT Software
Eng. Notes, vol. 15, no. 2, 1990, pp. 47–54.

 8. K. Kang et al., Feature-Oriented Domain
Analysis (FODA) Feasibility Study, tech. re-
port CMU/SEI-90TR-21, Software Eng. Inst.,
Carnegie Mellon Univ., 1990.

 9. F. Zwicky, “Morphological Astronomy,”
The Observatory, vol. 68, no. 845, 1948, pp.
121–143.

 10. D. Lucrédio et al., “Performing Domain
Analysis for Model-Driven Software Reuse,”
Proc. 10th Int’l Conf. Software Reuse,
Springer-Verlag, 2008, pp. 200–211.

 11. S. Cook et al., Domain-Specifi c Development
with Visual Studio DSL Tools, Addison-Wes-
ley Professional, 2007.

 12. M. Völter and I. Groher, “Product Line
Implementation Using Aspect-Oriented and
Model-Driven Software Development,” Proc.
Software Product Line Conf., IEEE CS Press,
2007, pp. 233–242.

 13. S. Kelly, “Domain-Specifi c Modeling: MDD
that Works,” blog, 17 Mar. 2010; http://bit.ly/
g1KyWp.

ANDRE W.B. FURTADO is a software engineer at Microsoft and
a PhD candidate in computer science at the Federal University of
Pernambuco, Brazil. His research interests include digital games devel-
opment, social technologies, edutainment, and software reuse. Furtado
received his MSc in computer science from the Federal University of
Pernambuco. Contact him at afurtado@afurtado.net.

ANDRE L.M. SANTOS is an associate professor in the Center of
Informatics at Federal University of Pernambuco, Brazil. His research
interests include software development for mobile devices, functional
programming, compilers, and domain-specifi c languages. Santos
received his PhD in computer science from the University of Glasgow.
He’s a member of the ACM. Contact him at alms@cin.ufpe.br.

GEBER L. RAMALHO is an assistant professor at the Federal Univer-
sity of Pernambuco. His main research interest is in digital entertain-
ment, including areas such as computer games, artifi cial intelligence,
and computer music. Ramalho received his PhD in computer science
from the University of Paris VI. Contact him at glr@cin.ufpe.br.

EDUARDO SANTANA DE ALMEIDA is an assistant professor in
the computer science department at the Federal University of Bahia,
Brazil, and head of the Reuse in Software Engineering (RiSE) Labs. His
research interests include methods, processes, metrics, and tools to
develop reusable software. Almeida received his PhD in computer sci-
ence from the Federal University of Pernambuco. He’s a member of the
ACM and IEEE Computer Society. Contact him at esa@dcc.ufba.br.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

