

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-24T06:03:47Z

Some rights reserved. For more information, please see the item record link above.

Title The Impact of Agile Practices on Trust in Software Project
Teams

Author(s) McHugh, Orla; Conboy, Kieran; Lang, Michael

Publication
Date 2012

Publication
Information

McHugh, O.; Conboy, K.; Lang, M. (2012) 'The Impact of
Agile Practices on Trust in Software Project Teams'. Ieee
Software, 29 (3):71-76.

Publisher IEEE

Link to
publisher's

version
http://dx.doi.org/10.1109/MS.2011.118

Item record http://hdl.handle.net/10379/3630

DOI http://dx.doi.org/10.1109/MS.2011.118

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Agile Practices: The Impact on Trust in Software
Project Teams

Orla McHugh, National University of Ireland, Galway

Kieran Conboy, Australian School of Business, Sydney

Michael Lang, National University of Ireland, Galway

Three case studies of agile teams highlight how agile practices can

enhance trust among agile team members while also generating new

challenges for such teams.

People are core to any software development effort, but they’re particularly important in an agile team.

The Agile Manifesto places great emphasis on the team, encouraging autonomy and giving individuals the

environment and support they need to get the job done.1 Leadership is shared, and the agile team has

substantially more control, which dramatically changes the project manager’s role.2 Managers must have

greater trust that their team will make the right decisions and complete tasks in a timely manner. An

environment where stakeholders trust and respect each other is both a prerequisite for and a consequence of

using agile methods. For example, practices such as collective code ownership and pair programming

require developers to trust each other,2 while other agile practices such as iteration planning, daily stand-

ups, and retrospectives help foster that trust.

Agile methods have been the subject of much research, as has trust, but the impact of trust on agile

teams has not.3 To address this gap, we explore how to develop and nurture trust among team members

through agile practices.

Trust in Teams

Roger Mayer and his colleagues define trust as the “willingness of a party to be vulnerable to the actions of

another party based on the expectation that the other will perform a particular action important to the

trustor, irrespective of the ability to monitor or control that other party.”4 Individuals with different

personality types, experiences, and cultural backgrounds vary in their propensity to trust others, with the

trust level evolving or diminishing over time as they interact with and observe each other.4–6 Distributed

teams face additional challenges such as difficulties controlling processes and quality and missing

opportunities to strengthen team morale and trust through face-to-face personal bonds. The limited

opportunity to communicate orally can increase miscommunication and delays.7

The emergence of agile teams has increased the importance of trust because teams are relatively free to

develop as they choose and set targets they consider appropriate.5 But a cohesive team of members who

collaborate and trust each other can be difficult for developers who are accustomed to working

predominantly on their own.2

Trust requires team members to believe that their colleagues possess the knowledge, competence, and

integrity to complete their assigned tasks. It’s enhanced when team members help each other.4 Conversely,

trust declines when team members see others as not fulfilling their obligations or see obligations as

incongruent, depending also on how vigilantly members monitor each other and the magnitude of perceived

discrepancy perceived between obligations and behavior.8

Agile Practice Case Studies

Although there are many different agile practices, we focused on the three listed in Table 1—namely,

sprint/iteration planning, daily stand-up, and sprint/iteration retrospective—and how they contributed to

trust among agile team members. We selected these practices, first because they’re among the most

commonly used,9 and second because each one requires the collective participation of all team members

with a focus on people, communication, interaction, and teamwork.

Table 1. Agile practices studied.

Agile practice Description

Sprint/iteration planning Meeting at the start of each sprint/iteration, during which the team collectively

defines and plans tasks for next sprint/iteration

Daily stand-up Short team meeting (10–15 minutes), during which members briefly outline

personal accomplishments, plans, and potential impediments

Sprint/iteration retrospective Meeting held after each sprint/iteration, during which a team reflects on what went

well, what didn’t, and what could be improved in future sprints/iterations

To help understand how these agile practices contributed to trust, we conducted case studies across three

teams. We selected the cases for their diversity in terms of how they were distributed and their industry

setting (see Table 2). Each team had implemented an agile methodology for at least six months, was

actively using the three agile practices studied, and had all team members available to participate in the

study.

Table 2. Case study profiles.

Case Agile

methodology

implemented

Team

size

Time since

agile

implementation

Interviews

conducted

Average time

of

interviewees’

employment

with

organization

Number of

agile

practices

observed

Case A Hybrid of XP

and scrum

10 persons 2 years 8

interviewees:*

1 project

manager (PM)

1 business

analyst

1 technical

architect

5 developers

4 years Sprint/iteration

planning (2)

Daily stand-up

(2)

Sprint/iteration

retrospective

(2)

Case B Scrum 9 persons 9 months 9

interviewees:

1 scrum

master (SM)

1 product

owner (PO)†

15 years Sprint/iteration

planning (1)

Daily stand-up

(3)

7 developers

Case C Scrum 8 persons 11 months 8

interviewees:

2 SMs

1 PO

3 developers

1 technical

architect

1 quality

assurance

(QA) person

5 years Sprint/iteration

planning (1)

Daily stand-up

(2)

Sprint/iteration

retrospective

(3)

*Two quality assurance team members in Case A, both based in India, departed the team prior to interview. Both had participated in

the agile practices observed.

†The product owner represents the customer and manages and prioritizes the customer requirements.

 Case A is a distributed team in a financial services organization that develops software for

internal business units.

 Case B is a collocated team in an engineering organization that manufactures and supplies

industrial robots.

 Case C is a collocated team in an organization that develops insurance industry software.

Data collection took place over a six-month period and consisted of 25 interviews across a range of roles

as noted in Table 2: project managers (PMs), business analysts, technical architects, developers, scrum

masters (SMs), product owners (POs), and quality assurance (QA) personnel. We also observed and

documented the three agile practices in field notes. During our data analysis, themes emerged across all

three teams on how agile practices can increase trust. We elicited opinions about the challenges relating to

each theme and reported the results in our findings solely on the basis of participants’ views. More details

on the research methodology, the case study’s broader context, and the interview protocol are available

elsewhere.10

Results and Analysis

Participants of all three teams reported that trust existed among their members. We found that agile

methods increased trust by increasing transparency, accountability, communication, and knowledge sharing

and feedback. In the following discussions, we quote interviewees directly.

Status Transparency and Visibility
All three agile teams agreed that using the agile practices increased their projects’ transparency and

visibility both within the team and in the organization. Our finding is consistent with those of Jan Chong.11

For example, the iteration/sprint planning meeting gives team members visibility on requirements,

individual task assignments, and estimates agreed for each task: “Everybody here hears the information at

the same time, not through others” [QA, Case C]. The daily stand-up provides transparency and visibility

on the day-to-day progression of tasks. It’s “obvious if someone is not completing tasks” [SM, Case B],

and “potential delays are immediately addressed” [PM, Case A] by the team. The retrospectives also

provide transparency and visibility regarding achievement of sprint goals. Team members could quickly

seek clarifications from each other when delays occurred and immediately improve work processes to

avoid recurrence.

Both the QA personnel and the POs noted that they place greater trust in the development team as a

result of agile practices. They’re aware of what the team intends to deliver in each iteration, “so new

features are not a surprise to anyone” [PO, Case C]. The QA and PO have the opportunity to influence task

prioritization, raise problems easily, and receive a timely response. From a QA perspective, the

development team and POs were aware of testing requirements and set their expectations accordingly. “The

planning meeting is very useful as it is crucial to hear what product management wants. At that point I can

question them directly as to what they mean and want, and suggest things that they haven’t thought of”

[QA, Case C].

Transparency and visibility enhance congruence and vigilance, factors that have been seen to increase

trust within software development teams.8

Accountability and Collective Responsibility
All members across the three teams openly provide estimates for tasks assigned to them, whether it’s a

development task, QA task, or requirement for the PO to obtain information from the customer. Team

members feel accountable to each other. “Now it’s a team goal, so if someone is not completing their task

then it means that the team has a harder time” [developer, Case B]. Team members also feel personal

responsibility and pressure themselves to deliver what they promised. “If you take the task, you feel

responsible for it” [developer, Case C]. By delivering tasks within the timeframe promised, team members

demonstrate their competence and trustworthiness to complete similar tasks in the future.

The iteration/sprint planning practice provides an opportunity for team members to determine and agree

on estimates. The cases we studied implemented this practice in two different ways. In case A, each

developer detailed his or her own estimates. Several team members were considered experts in a particular

area, and their estimates “are not really questioned” [developer, Case A]. This trust might reflect the

experts’ high competency level because “we tend not to [exceed estimates] as a team” [developer, Case A].

In cases B and C, estimating was more collaborative and “decisions are taken collectively” [developer,

Case B]. Where estimates varied widely, individuals discussed them until they agreed on a final estimate.

This built trust by helping team members develop a better understanding of each other and their

competencies to complete a task.

In case C in particular, the developers and QA felt a collective sense of ownership for the software and

its quality, which didn’t exist prior to the scrum implementation. “I think the sense of shared responsibility

and ownership has been strengthened by the idea that you have to stand up and talk about what you are

doing and you can’t hide. And that everybody has a say or can have a say, if they wish, in what the end

product is” [QA, Case C].

The accountability and collective responsibility in agile methods nurture trust by facilitating vigilance,

aligning members’ perceptions realistically with individual competences and abilities, fostering a sense of

benevolence through team solidarity, and enhancing perceived integrity through a demonstrated shared

work ethic.8

Open and Frequent Team Communication
All teams indicated that prior to implementing agile methods, communication occurred only when it was

required—for example, at status meetings. Agile practices require constant interaction and frequent

communication, which all team members acknowledged to be a huge benefit and a key factor in developing

trust. Conversation take place “that wouldn’t happen if these practices weren’t being used” [PM, Case A],

and the practices build common awareness of tasks and how they affect each other.

Team members weren’t afraid to ask for and offer help to each other. “I think it is a major improvement

that we have a product owner, and we can ask him anytime and get instant feedback on decisions”

[developer, Case C]. Regular communication was very important for Case A, whose team was distributed

across three continents. The daily stand-up in particular made it easier to establish team cohesion. “Because

of the continuous communication between the team, it helped me feel part of the team” [Technical

Architect, Case A].

In all three cases, agile practices integrated new team members integrate much more rapidly. New team

members were expected to participate immediately in all three practices, which builds trust and

relationships quickly with existing team members. This result is consistent with previous studies that found

daily stand-ups around “information radiators” (a large, visible display used by software development

teams to track progress of tasks) to raise awareness and build trust through greater cohesion.12,13

Using agile practices has also helped alleviate the distrust that distributed team members from different

cultures can experience,7 which was a concern to Case A. Building good relationships with distributed team

members can be difficult, especially when “you haven’t met face-to-face” [developer, Case A]. The daily

participation of distributed team members helped build trust, especially for the project manager, who had

some trust concerns with the distributed team members but found the “stand-up is a great way to keep on

top of [progress]” [PM, Case A].

Thus, open and frequent communication in agile development facilitates trust by promoting a sense of

good will and belonging. It also lessens the perceived magnitude of discrepancies between expected and

actual output by clarifying the reasons for any variances.8,13

Knowledge Sharing and Feedback
All three practices provide an open forum for sharing knowledge and obtaining feedback: “It’s good to

know you can throw your ideas out there” [business analyst, Case A]. The practices help build trust among

team members because “they are having [meetings] on a more regular basis” [PM, Case A] and “we speak

a bit more about how we actually work” [developer, Case B]. Individuals are encouraged to voice their

opinions in all three practices without fear of repercussions, and no one had ever been “reproached for

expressing an opinion” [Developer, Case A]. If a task takes longer than estimated, an individual isn’t

reprimanded or viewed negatively but instead is helped to complete the task. The practices give team

members an “opportunity to question, and once you get a valid answer back…, then that does help [with

trust]” [business analyst, Case A]. If the environment was not as supportive, there might be a tendency for

individuals to “become more conservative when [they] plan” [developer, Case A] so they can avoid blame,

which could be “very detrimental” [developer, Case A] to the project.

The practices also provide opportunities for feedback “and that builds trust, for sure” [SM, Case B]. In

cases B and C, the team holds a demo at the end of each iteration or sprint. The customer or PO is expected

to attend the demos, which gives them confidence that the development team can deliver on what they’ve

promised and, to a certain extent, satisfaction in seeing their requirements as part of a working piece of

software. For example, “two weeks ago, that was something I wrote [as a requirement] and now there it is

in the screen” [PO, Case C]. The PO can quickly ascertain whether team members are knowledgeable and

competent to deliver on what they promise, which increases trust through good will and more realistic

perceptions of the team members’ individual abilities.

Challenges

Trust was strong in all three teams and reinforced by agile practices, particularly from the QA and PO

perspectives. We identified four factors that increased trust but also created challenges for teams, as

reported by participants of the study (Table 3).

Table 3. Challenges facing agile teams in relation to trust.

Agile practices Factors that have an

impact on trust

Challenges

Sprint/iteration planning Transparency and visibility of

project status to all

stakeholders

* Organisational personnel external to the team have

visibility on task status but perhaps not on actual

causes of delays, if any

Daily stand-up Accountability and collective

responsibility

* Team members tend to inflict pressure on

themselves to deliver

* Development of tension between the product

owner and the project team

Sprint/iteration retrospective Open and frequent

communication within the

team

* Developers too accessible to the product owner

Sharing knowledge and

obtaining feedback

* Teams tend to underestimate tasks

* Teams see little value in the sprint/iteration

retrospective

External Visibility on Project Tasks
In two cases, developers identified a challenge arising from broader organizational access and visibility to

the status of all project tasks. This visibility triggered comments on the progress of particular tasks by

individuals who were not part of the team,. Some team members considered the comments inappropriate

because these individuals might be unaware of reasons for a task’s delay.

One case dealt with this to a degree by letting any employee attend and observe the daily stand-up or the

demo and retrospective but restricting their comments or queries to the demo part of the retrospective. This

could help build trust between the development team members and non-team members and keep nonteam

members informed about what’s happening.

Team Pressure
Many team members said they felt extra pressure to complete a task within a specific timeframe once they

had committed to the team that they would do so. They felt they were letting the team down if they weren’t

able to complete the task on time. This pressure was entirely self-inflicted, but it might be consequent to the

increased visibility of tasks and personal accountability to the team.

A failure to deliver tasks might also demonstrate a lack of competence and thereby diminish trust

between team members.

Tension between the PO and the Team
Interviewees differed about whether POs were part of the team. Some team members considered them to be

a team member and others did not. In two cases, the POs themselves didn’t feel they were part of the

project team and indicated that a certain amount of tension exists between them and the rest of the group.

Nevertheless, the PO must trust the development team to do what it says it will do, and the development

team must trust the PO not to overburden it with work.

The POs reported a constant struggle with their loyalties. They saw themselves situated between the

business management and the development team, but they occasionally side with the development team to

justify decisions to the business management. The difficulties in meeting the demands of different

stakeholders can make the PO role unattractive for employees. Individuals in this role must be able to

handle conflict and manage the expectations of all stakeholders.

Developers Accessibility to the PO
The three agile practices increased communication and helped build relationships and trust between the PO

and the development team. In one case, this made the PO feel easier about approaching developers to make

requests or ask their opinion at any time. From a developer’s perspective, this access must be managed and

controlled so that ad hoc requests aren’t suddenly added to the requirements list without agreement from

the team.

At the same time, when a team doesn’t agree to work on an ad hoc request, the PO can feel that the team

is inflexible and not agile.

Tendency to Underestimate Tasks
Two of the three cases showed a tendency to underestimate task durations. Team members were mostly

experienced and quite familiar with the development environment, but they found it difficult to accurately

estimate unknown tasks—even with the planning meeting as a forum for sharing information.

The projects openly acknowledged this fact, but it didn’t appear to concern the team members or affect

trust levels between them. If a task wasn’t completed, the prevailing view was that it could always move to

the next iteration or sprint.

Value of the Retrospective
Although the teams considered the concept of a retrospective to be important, most interviewees placed

little value in it. They reported that it was routine and raised few issues. When an issue did come up, it

might be discussed but seldom generated action points or follow-up. As implemented, the retrospective

limited the communication, knowledge-sharing, and feedback mechanisms for building trust.

There was also some concern expressed over the retrospective participants. In one case, the PO was

regularly absent from the retrospective, which affected the relationship with the team. The team members

reported little trust between them and the PO.

Despite the challenges they raise, the three agile practices we examined helped the groups we studied

function more cohesively as a team, rather than just a group of individuals working together. Mandatory

participation in the practices builds trust among agile team members. The practices can also quickly

highlight any trust issues that exist in a team.

There are some limitations and avenues for future research arising from this study. First, other factors

can also enhance trust, such as the organizational culture and the experience and personalities of individual

team members. Furthermore, the teams we studied were relatively small, which is typically the case when

agile approaches are adopted. Consequently, trust might be due to the teams’ size and proximity as opposed

to agile practices. Although we made every effort to link the agile practices we studied to trust, studying the

practices in larger teams would address this limitation. In addition, our study focused only on trust among

team members. Future studies could look at other aspects of trust and at how agile and other practices affect

trust between the team and other stakeholders.

Accountability seemed to be very high in this study, which might reduce the importance of trust. This

doesn’t render the findings any less valid, but a study of agile teams that exhibit less accountability might

reveal lower trust levels and more negative effects. Finally, the challenges we report reflect team members’

trust not only in each other but also in the agile process. We focused on the former, but future research

could examine trust and confidence in the agile process being employed.

As is typical with case study research, there are several limitations regarding its generalizability and

scope. Future research could use more quantitative, explanatory methods to determine the extent to which

the trust factors raised in this study are representative of the field. Trust is a sensitive and often a subtle

concept, so more generalizable studies that identify the extent of the issues would make a significant

contribution.

Acknowledgments
This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero-the Irish Software

Engineering Research Centre (www.lero.ie), and by grant aid received from Enterprise Ireland as part of the Global

Agile Innovation project.

References

 1. AgileAlliance, “Manifesto for Agile Software Development,” 2001; www.agilemanifesto.org.

 2. S. Nerur, R. Mahapatra, and G. Mangalara, “Challenges of Migrating to Agile Methodologies,” Comm. ACM,

vol. 48, no. 5, 2005, pp. 72–78.

 3. E. Hasnain and T. Hall, “Investigating the Role of Trust in Agile Methods Using a Light Weight Systematic

Literature Review,” Agile Processes in Software Engineering and Extreme Programming, Springer, 2008, pp.

204–207.

 4. R.C. Mayer, J.H. Davis, and F.D. Schoorman, “An Integrative Model of Organizational Trust,” Academy of

Management Rev., vol. 20, no. 3, 1995, pp. 709–734.

 5. T.K. Das and B.-S. Teng, “Trust, Control, and Risk in Strategic Alliances: An Integrated Framework,”

Organization Studies, vol. 22, no. 2, 2001, pp. 251–283.

 6. J. Iivari and N. Iivari, “The Relationship between Organizational Culture and the Deployment of Agile Methods,”

Information and Software Technology, vol. 53, no. 5, 2011, pp. 509–520.

 7. B. Ramesh, L. Cao, and K. Mohan, “Can Distributed Software Development Be Agile?” Comm. ACM, vol. 49,

no. 10, 2006, pp. 41–46.

 8. G. Piccoli, and B. Ives, “Trust and the Unintended Effects of Behavior Control in Virtual Teams,” MIS Q., vol.

27, no. 3, Sept. 2003, pp. 365–395.

 9. “State of Agile Development Survey 2009,” white paper, VersionOne, 2009;

http://pm.versionone.com/StateofAgileSurvey.html.

 10. O. McHugh, K. Conboy, and M. Lang, “Using Agile Practices to Build Trust in an Agile Team: A Case Study,”

Proc. 19th Int’l Conf. Information Systems Development, Springer 2010, pp. 503-516

 11. J. Chong, “Social Behaviors on XP and Non-XP teams: A Comparative Study,” Proc. Agile Development Conf.,

IEEE Computer Society, 2005, pp. 39–48.

 12. H. Sharp and H. Robinson, “Collaboration and Co-ordination in Mature eXtreme Programming Teams,” Int’l J.

Human-Computer Studies, vol. 66, no. 7, 2008, pp. 506–518.

 13. E. Whitworth and R. Biddle, “Motivation and Cohesion in Agile Teams,” Proc. 8th Int’l Conf. (XP 2007),

Springer 2007, pp. 62–69.

Orla McHugh is a lecturer in information systems at National University of Ireland, Galway. Her research

interests lie in the area of agile software development with a specific focus on control in agile teams.

McHugh has a PhD in information systems from NUI Galway. She’s a member of the Association for

Information Systems. Contact her at orla.mchugh@nuigalway.ie.

Kieran Conboy is an associate professor at the University of New South Wales and the Lero research

center in Ireland. His research focuses on agile systems development approaches as well as agility

across other disciplines. Conboy has a PhD in information systems from the University of Limerick.

He’s associate editor of the European Journal of Information Systems. Contact him at

k.conboy@unsw.edu.au

Michael Lang is a lecturer in information systems at National University of Ireland, Galway. His principal

research interests are systems development approaches, information systems security and information

systems education. Lang received his PhD in information systems from the University of Limerick. He’s

on the editorial board of several international journals and on the executive committee of the International

Conference on Information Systems Development. Contact him at michael.lang@nuigalway.ie.

Abstract: Agile software development involves self-managing teams that

are empowered and responsible for meeting project goals in whatever way

they deem suitable. Managers must place more trust in such teams than

they do in teams following more traditional development methodologies.

The authors highlight how the use of agile practices can enhance trust

amongst agile team members. They also present challenges that agile

teams can face as a result of using agile practices. Their results are based

on the findings from three case studies of agile software development

teams.

Keywords: Agile methodology, agile practice, daily stand-up, planning,

retrospective, trust, culture, distributed software engineering

DOI: http://doi.ieeecomputersociety.org/10.1109/MS.2011.118

