
074 0 -74 5 9 /12 / $ 21. 0 0 © 2 012 I E E E JULY/AUGUST 2012 | IEEE SOFTWARE 21

WHEN ONE OF us (Chris) accepted the
post of project manager/lead developer
on a scienti� c software development
project, he was blissfully ignorant of

the challenges he faced. Six years later,
he emerged bloody but unbowed with
a software product that now has a re-
spectable and growing user base. This

article is the story of his journey as told
to Judith and the lessons he learned and
shared with her along the way.

Project Background
The project was to develop a labora-
tory information management system
(LIMS) for biologists working on pro-
tein structures. The process by which
they search for such structures involves
several steps in a laboratory, with each
step made up of multiple variables (the
concentration of various chemicals,
temperatures, and so on). These steps
often aren’t well understood and fre-
quently lead to failure. Practice has
recently changed in many labs so that
each step is performed as a set of trials
done in parallel, with each trial differ-
ing slightly in context—that is, in vari-
able value and type.

The � rst requirement for the LIMS
was to record the context of each of
these trials, whether they were suc-
cesses (so they could then go into a li-
brary of known procedures) or failures
(so that scientists could be deterred
from making the same mistake twice).
To develop this LIMS, the chief cus-
tomers—generally, the heads of the labs
involved—provided Chris with a list of
very high-level requirements, an imple-
mented model of the science (that is, of
the relevant biochemical objects and
the relationships between them) along
with an automated mechanism for gen-
erating the database and the interface,
and a development team consisting of
people with backgrounds in either soft-
ware engineering or structural biology.
The development plan followed an iter-
ative incremental feedback model with
scheduled releases spaced at every few
months; users could provide feedback
to inform the next release, which would
also implement further requirements.

Lessons Learned
from a Scienti� c
Software
Development
Project
Chris Morris, Science and Technology Facilities Council, UK

Judith Segal, Open University, UK

In the mid-90s, I was working for a company
transitioning to agile software development. We hadn’t
considered that our biggest problem in this change
was that developers would be talking directly to
customers. After some small disasters, we realized
that somehow we needed to transfer the expertise
and experience of our business and marketing teams
to developers. When I � rst read the current Insights
article, I immediately recognized many patterns in the
list of lessons learned and that what these authors
have to say is much broader than “scienti� c” software
-- it’s about any kind of software, actually, any kind of
development effort. —Linda Rising, Associate Editor

INSIGHTS: SOFTWARE DEVELOPMENT

22 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

INSIGHTS: SOFTWARE DEVELOPMENT

What could possibly go wrong? Chris
soon found out.

Lesson 1: Choose Carefully
between Soon and Good
It’s generally agreed that it’s impor-
tant that iterative incremental feedback
development models quickly deliver
a piece of software, which, while of
limited functionality, offers something
of value to the customer and the user.
This delivery, it is hoped, will encour-
age customers and users both to trust
the developers and to engage with the
development. As to delivering some-
thing good, there are many different
quality goals that might be met. Such
goals vary with each development con-
text: Does the output have to be cor-
rect to three decimal places, or does it
just have to follow some trend? Does
the software have to be easy to install?
Is software � exibility more important
than absolute correctness? Is portabil-
ity more important than ef� ciency?

At the beginning of the development,

Chris presented his customers with
a list of quality goals that he wanted
them to rank. They didn’t. Whether
this was because they had no time or
because they thought it was Chris’s re-
sponsibility wasn’t clear. The articu-
lation and ranking of quality goals
emerged gradually, through a deeper
understanding of the context of work.
However, one quality goal immedi-
ately became apparent as being of the
upmost importance—deposited data
shouldn’t be lost or corrupted. Fortu-
nately, Chris thinks he got that right
from the beginning. Another funda-
mental quality goal was that scientists

needed to � nd the LIMS useful and de-
posit their data in it in the � rst place.
Satisfying this goal turned out to be far
more of a problem.

Lesson 1a: Customers Don’t
Always Know User Needs
One impetus for delivering the � rst
version of the LIMS quickly was that
the scientists were already producing
data that needed managing. It seemed
clear to Chris that he should base this
� rst version on the implemented data
model and its associated mechanism as
supplied to him by the customers. This
produced a piece of software that was
incredibly complicated to use, with a
user interface (UI) driven by the data
model rather than user requirements.
The users refused to have anything to
do with it, so any idea of a feedback
model of development seemed doomed.
Chris soon realized that he needed to
consider the software from the user
viewpoint—that is, the bench scien-
tists who entered the data, as well as

from that of the customers providing
the money.

Lesson 1b: Asking Users
Doesn’t Establish Requirements
The list of requirements Chris origi-
nally received proved to be at too high
a level to guide implementation.

His � rst attempt at more detailed
requirements gathering was to ask one
member of the development team, a
structural biologist, to draw up a set of
use cases in collaboration with a user
group. This set would have suf� ced in
a situation such as the development of
new software to support the adminis-

tration of insurance policies—that is,
somewhere with well-understood goals,
practices, and software embedded in
the practice. In this particular situation,
however, use cases turned out to be a
� op. The developers didn’t fully under-
stand the variations in practice between
labs or the possible ways to embed data
management software within practice.
One of the original goals of the LIMS
as stated by the customers was to en-
able data sharing and mining across
the whole protein structure commu-
nity. But a sizeable number of the users
were PhD students, and their primary
goal was to get their PhD—as far as
they were concerned, the wider scien-
ti� c community could look after itself.
More senior scientists were similarly
ambivalent about this sharing and min-
ing goal. A very limited pot of public
money funds their labs, and they essen-
tially compete with each other for this
pot so it’s easy to understand why they
view the issue of data sharing with a
certain degree of ambivalence.

Presumably because of this tension
between the goals of individuals and in-
dividual labs and the community, ask-
ing users directly about their require-
ments wasn’t always very informative.
The development team experienced re-
peated instances of the following cycle:
a user group said they couldn’t use the
software because a particular feature
wasn’t implemented. The team imple-
mented it. Then the users said they still
couldn’t use the software because of
the absence of some other feature. The
team implemented whatever that was.
The users then said they still couldn’t
use the software because it lacked
something else. And so on. Chris con-
cluded that users must have had some
deep-seated reason for not using the
software and were unwilling or unable
to communicate it to him.

Another reason why asking users for
requirements doesn’t always work is
because they’re experts in (in this case)
protein science, not in imagining how

Asking users about their requirements
wasn’t informative.

 JULY/AUGUST 2012 | IEEE SOFTWARE 23

software can help them. In particu-
lar, they don’t know which software
features are, or are not, feasible. One
way of addressing this challenge is for
developers to acquire a deeper under-
standing of context, but this takes time
and resources, and is in direct con� ict
with the necessity of delivering value
quickly. This brings us to lesson 1c.

Lesson 1c: Start from
What Users Do Now
You can still deliver software of value
to users even when your understanding
of the work context is incomplete.

In retrospect, Chris wishes he’d
started by asking users how they used
their computers and moved forward
from there. Then he could have delivered
as part of the LIMS a subsystem for,
say, keeping stock of and reordering
chemicals. While not contributing to the
stated primary aim, Chris thinks this
would have had the effect of gaining
user trust and engagement while buying
time to improve his understanding of
the work context.

Chris was aware that one big barrier
to uptake of early versions of the system
was its perceived lack of usability—the
UI, in particular, was an inconsistent
mess. Chris initially responded to this
by asking the developer responsible
for UI to write a “design guide,” but
this turned out to be a write-only
document. It wasn’t used, and even had
it been, it would have only re� ected
the views of the developer-writer and
not of the users. Later, Chris realized
that all the users were familiar with the
concept of entering data into lab books,
so the team redesigned the UI based on
that metaphor. This redesign appeared
to be very successful.

As the development team’s under-
standing of the work context improved,
they were able to construct tools (such
as personas) that proved helpful in pri-
oritizing implementation. This increas-
ingly deep understanding also enabled
the developers to be creative with the

software and introduce innovations
(such as providing templates for proce-
dures as opposed to a static database)
that the users found effective.

Lesson 2: Good Communication
between Developers
Can’t Be Taken for Granted
All developers, we think, are aware of
the need for good communication be-
tween developers and users and are

prepared to put in the resources to sup-
port this. However, many of them take
for granted good communication and
trust among members of the develop-
ment team. Chris couldn’t do this. His
team members comprised nine different
people at � ve different sites with � ve
different line managers (some of whom
headed user labs) and � ve different na-
tionalities. Some members had back-
grounds in software engineering, some
in structural biology—for others, it
was their � rst job after university. This
variety offered plenty of potential for
disagreement, for example, when line
managers in user labs prioritized the
needs of their own institution. Com-
munication was dif� cult and not just
because of cultural norms (people from
country x tending to be more forthright
than those from country y)—there was
also a lack of common knowledge,
with some people having no idea what
“black-box testing” means and others a
bit fuzzy about the term “gene.” (We’ve
since discovered that there is consider-
able discussion among biologists about
exactly what a gene is, but we’re refer-
ring here to everyday use of the term).
This mismatch of goals and common
knowledge together with general dif-

� culties in communication led initially
to what Chris perceived to be mistrust
by the development team of him as the
project manager.

He took positive steps to address
this situation by commissioning an-
nual training in soft skills such as con-
� ict management and appreciation of
cultural differences. Some developers
described this training as very useful;
others were more circumspect. Whether

by means of this training or by dint
of the experience of working together
over time to overcome the various dif-
� culties, the team succeeded in gelling
approximately half-way through the
project.

Lesson 3: Plan for Sustainability
from the Beginning
Scienti� c software developments are
often funded by research money that’s
only available for a certain period of
time—in this case, � ve years. Later, as
the technical and scienti� c environment
changes, the software remains use-
ful only if it’s maintained. But who is
to pay for such maintenance? One way
to address this question is to grow the
user community so that you gain a crit-
ical mass of scientists eager to use the
software after the period of research
funding ends. Alternatively, it might be
possible for the software to be licensed
so that it’s free for academic use, but
commercial users have to pay, with the
latter subsidizing the former.

Clearly, you need to grow a user
community quickly. In retrospect,
Chris wishes that he’d prioritized some
development features in light of this
need from the beginning.

Deep understanding enabled
the developers to be creative.

24 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

INSIGHTS: SOFTWARE DEVELOPMENT

Lesson 4: If Adopting Software
Changes Work Practices, Its
Development Has Special
Challenges
Compare the use of the LIMS with, for
example, the use of software to sup-
port the working practices of the in-

surance industry. Insurance companies
have used software to support their
record keeping for decades. The same
isn’t true for lab scientists: keeping re-
cords in lab books has been engrained
in their work culture for centuries. It’s
only recently, with the growth of col-

laboration and data sharing in the bio-
logical sciences, that the advantages of
electronic record keeping have become
apparent. The implication is that de-
velopers in this context can’t use well-
established techniques without a lot of
thought. It might also be that the itera-
tive incremental feedback development
model, often taken as the one most suit-
able for scienti� c software development
because it mirrors the essential nature
of scienti� c discovery, should be modi-
� ed so that it incorporates an extended
period at the beginning of the develop-
ment to understand the work context.

C learly, we learned a lot in six
years, and we would be very
pleased to hear about expe-

riences from other scienti� c software
developers.

ABOUT THE AUTHORS

CHRIS MORRIS is a software project manager at STFC, developing data
management software for life scientists. Morris has an MA in mathematics
from the Queens College, Oxford. Contact him at chris.morris@stfc.ac.uk.

JUDITH SEGAL is a senior lecturer in computing at the Open University, UK.
Her research interests include the impact of software engineering on scienti� c
software development, the practice of software development, and interaction
design. Segal has PhD in mathematics from the University of Warwick, UK.
Contact her at j.a.segal@open.ac.uk.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

