
88	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Impact

Good advice in software design
is difficult to come by. General design
principles can guide us, but reality
tends to force trade-offs between seem-
ingly conflicting goals, such as flexibil-
ity and maintainability against size and
complexity. Likewise, code libraries

can go a long way in helping us avoid
reinventing the wheel, but the vision
of lesser-skilled developers effortlessly
wiring together ready-made compo-
nents remains fiction.

Design patterns have helped nar-
row this gap by documenting a well-

working solution to a problem that
occurs repeatedly in a given context.
Instead of presenting a copy-and-paste-
ready code snippet, patterns discuss
forces impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-
tions: encryption and decryption algo-
rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.1

Although patterns have become
popular, their impact as a design tech-
nique is more difficult to quantify than
the impact of a specific software prod-
uct (which is what previous install-
ments of this column have examined).
This installment highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

Twenty Years of
Patterns’ Impact
Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonprofit organization that promotes the use of
patterns and pattern languages, to reflect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

continued on p. 84

84	 IEEE Software | www.computer.org/software

Impact

How It All Began
Building architect and philosopher
Christopher Alexander inspired Kent
Beck and Ward Cunningham to write
their first small pattern language in
1987 for designing Smalltalk windows.
In 1993, Beck and Grady Booch spon-
sored a mountain retreat in Colorado
that triggered the formation of the non-
profit Hillside Group to foster pattern
writing through the Pattern Languages
of Programming (PLoP) conference se-
ries, which is celebrating its 20th suc-
cessful year. PLoP conferences follow
a highly collaborative style based on
“shepherding” before submission and
peer-based feedback workshops during
the conference. Many successful pat-
tern papers and books have emerged
from this process.

In 1994, Erich Gamma and his col-
leagues’ Design Patterns catapulted
the concept of patterns to a broad audi-
ence; as of this writing, it has sold more
than 500,000 copies in 13 languages.2
Two years later, Frank Buschmann
and his colleagues produced the first
volume of the Pattern-Oriented Soft-
ware Architecture series,3 closely fol-
lowed by Martin Fowler’s Analysis

Patterns.4 (Resources for further read-
ing are available elsewhere.5–9) The
pattern format’s apparent success even
tempted some authors and publish-
ers to gratuitously add the word “pat-
terns” to their titles—the price of suc-

cess, we feel. As of 2013, an Amazon
search on “patterns” among computer
and technology books yields more
than 5,500 unique hits (including a
minor number of false positives on vi-
sual pattern detection).

The early hype around patterns has
settled, and people realize that patterns
neither replace design skills nor solve
all problems. Still, well-crafted pat-
terns provide valuable nuggets of rele-
vant advice based on actual experience.
Because learning by doing (learning
from making mistakes) often isn’t an
option for real-world projects, patterns
can provide a way to learn from others’
experience (and mistakes, which can
make good antipatterns).

No Sign of Pattern Fatigue
The widespread diversity of pattern
domains makes determining the ex-
act number of documented patterns
difficult. Linda Rising’s The Pat-
tern Almanac 2000 listed more than
1,000 patterns.10 The PLoP confer-
ences, sponsored by the Hillside Group
(www.hillside.net), have accepted more
than 1,500 papers. The submission rate
to those conferences has been constant,
at approximately 100 papers per year.
A conservative estimate of four pat-
terns per paper, plus all the books and

online catalogs, puts today’s number of
published patterns at more than 7,500,
and growing. Patterns cover a range of
computing topics, including cloud com-
puting, distributed systems, concurrent
and parallel programming, user inter-

face design, mobile app development,
adaptive systems, sustainable architec-
tures, domain-specific patterns, meta-
architectures, workflow, fault-tolerant
systems, and security.

Many people accept the definition
of a pattern as a proven solution to a
problem in a context. In The Timeless
Way of Building, Christopher Alex-
ander clarifies that “the pattern is, in
short, at the same time a thing, which
happens in the world, and the rule
which tells us how to create that thing,
and when we must create it.”11 Pat-
terns present a reusable solution, pro-
vide information about its usefulness
and trade-offs, and encapsulate knowl-
edge about proven best practices.

For example, many integration ar-
chitectures include the Broker pat-
tern, which acts as an intermediary
between clients and servers and han-
dles message routing, including serial-
ization and deserialization of message
content.2 The Web’s communication
infrastructure implements this pat-
tern; workflow engines such as YAWL
(Yet Another Workflow Language)
also include rich implementations of
this pattern.12

Many patterns are part of a pattern li-
brary; examples include http://developer.
yahoo.com/patterns and www.
securitypatterns.org. Many companies,
including Amazon, Google, IBM, Lu-
cent, Microsoft, Oracle, and Siemens,
have written similar pattern collections,
some of which are available in books
and on websites. One example of such
pattern collection is the IBM patterns
for e-business catalog. Among many
other recurring designs, it featured im-
plementations of the Enterprise Service
Bus in the context of IBM WebSphere
products.13 Connected sets of interre-
lated patterns building on each other
can form pattern languages, which sup-
port a generative, domain-specific devel-
opment process.14 There’s even a pattern
language for writing patterns.15

continued from p. 88

A conservative estimate puts
today’s number of published patterns
at more than 7,500, and growing.

	 November/December 2013 | IEEE Software � 85

Impact

Enterprise Integration Patterns
Patterns’ success in software architec-
ture and design has motivated attempts
to integrate them more closely into pro-
gramming tools to boost productivity
and more closely align design and im-
plementation mindsets. Alas, most at-
tempts have stumbled because patterns
are inherently a medium for document-
ing and passing knowledge between hu-
mans, not a programming construct.
Still, some pattern languages have di-
rectly affected how software solutions
are built.

Around 2003, the term Enterprise
Service Bus (ESB) gained traction for
describing the integration platform for
service-oriented architectures. ESBs
route, filter, and transform XML mes-
sages between services; they represent
the evolution of traditional enterprise
application integration products that
implement the Broker pattern. Ironi-
cally, although these products aimed to
unify the Tower of Babel of disparate
enterprise applications, no shared vo-
cabulary to describe such solutions’ de-
sign was available.

Developers of open source ESB im-
plementations that aimed to overcome
this apparent gap soon realized that En-
terprise Integration Patterns (EIPs) pro-
vide a coherent vocabulary of 65 pat-
terns,7 ranging from integration styles
to message routing and transformation.
This can describe a large portion of
meaningful ESB solutions. In the ab-
sence of an ESB industry standard, the
open source projects adopted the EIP
vocabulary as a de facto standard.

Open Source ESBs
Since the emergence of open source
ESBs in 2005, almost a dozen open
source ESB products have embedded
the EIP language in their products’
domain-specific languages or program-
ming models. The most widespread ex-
amples are Mule (www.mulesoft.org),
Apache Camel (http://camel.apache.

org), WSO2 ESB (http://wso2.com/
products/enterprise-service-bus), Spring
Integration (http://projects.spring.io/
spring-integration), and OpenESB
(www.open-esb.net).

The nature of open source projects
makes tracking code size relatively
easy. However, tracking volume is rel-
atively difficult because sales figures
don’t exist and download numbers are
often tainted by mirroring, caching, or
automated downloads.13 Apache Camel
comprises some 890 KLOC, created
by 62 committers over the course of
more than 18,000 individual commits
over six years. The (Java) code base’s
growth has been amazingly linear (see
Figure 1), which suggests consistent en-
gagement by a stable set of committers.
Commercial adaptations of the open
source core—for example, by Red Hat
or Talend—augment the code base sig-
nificantly with design or runtime man-
agement tools.

Download figures derived from
Maven Central have averaged about
25,000 a month with a peak of more
than 30,000 in July 2013—higher

than YAWL, which reported about
1,000 downloads per month in 2010.13
Mule reports 3.6 million downloads
on its homepage but doesn’t indicate
whether all of them are individual
user-initiated downloads.

Community engagement provides
another insightful metric of open
source success. Apache Camel commu-
nity traffic quickly ramped up after its
initial release in 2007 and holds steady
at about 2,500 messages a month. This
indicates a healthy community that col-
laborates to resolve issues and drives
the product’s evolution. For compari-
son, Mule’s community page counts
more than 150,000 members, and its
forum counts 26,600 total posts.

Patterns as a Design Tool
After the EIP vocabulary’s integra-
tion into those products proved popu-
lar, some ESB projects went one step
further and adopted the EIP pattern
sketches as the visual language for
their design studios. For example, de-
velopers can access the EIP icon lan-
guage within the Red Hat Fuse IDE

Figure 1. Apache Camel core code growth over time. Linear growth of the Java code

base suggests a stable committer community and sustained engagement. The amount of

JavaScript jumped in 2009, but was later reduced, likely to the availability of libraries and

frameworks.

86	 IEEE Software | www.computer.org/software

Impact

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-filters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, finding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

Figure 2. Creating messaging solutions

using the visual pattern language from

Enterprise Integration Patterns (EIPs)7 inside

the Redhat Fuse IDE (integrated development

environment). Messages arriving from a

file-based message endpoint are routed

by a content-based router to one of two

potential message endpoints based on the

city specified inside the message content.

The content-based router pattern describes

a reusable design for routing messages to a

correct recipient based on message content.

Figure 3. Playing cards based on Enterprise Integration Patterns. The visual pattern

language allows for an interactive, almost playful usage of the patterns. Each card displays the

pattern icon together with the name and solution statement.

	 November/December 2013 | IEEE Software � 87

Impact

open, however. For example, good pat-
terns aren’t always easy to find, which
invites more work to organize and cata-
log the large body of existing patterns.
We also envision pattern language au-
thoring tools, perhaps using seman-
tic wiki technologies. Finally, pattern-
centric design tools promise to be more
appealing to the software engineers
than mere component-and-connector
drawing tools.

Will the patterns community ever
lose momentum? We don’t think so: ex-
isting pattern languages will continue
to be implemented as domain-specific
languages, just like EIPs. And domains
still exist for which patterns have yet to
be captured. For instance, typical con-
versations both between applications
(via technical protocols) and between
humans (such as via social networks)
could be preserved in pattern form.

The future of patterns is bright. We
invite you to help shape it by further-
ing the development of a pattern tool
or writing and sharing your design wis-
dom in pattern form.

References
	 1.	 W. Cunningham, “Tips for Editing Patterns,”

Dec. 2002; http://c2.com/doc/TipsForEditors.
html.

	 2.	 E. Gamma et al., Design Patterns, Addison-
Wesley Professional, 1994.

	 3.	 F. Buschmann et al., Pattern-Oriented
Software Architecture, Volume 1: A System of
Patterns, John Wiley & Sons, 1996.

	 4.	 M. Fowler, Analysis Patterns: Reusable
Object Models, Addison-Wesley Professional,
1996.

	 5.	 J. Kerievsky, Refactoring to Patterns,
Addison-Wesley Professional, 2004.

	 6.	 M. Fowler, Patterns of Enterprise Application
Architecture, Addison-Wesley Professional,
2002.

	 7.	 G. Hohpe and B. Woolf, Enterprise Integra-
tion Patterns: Designing, Building, and De-
ploying Messaging Solutions, Addison-Wesley
Professional, 2004.

	 8.	 E. Evans, Domain Driven Design: Tack-
ling Complexity in the Heart of Software,
Addison-Wesley Professional, 2003.

	 9.	 V. Vernon, Implementing Domain-Driven
Design, Addison-Wesley Professional, 2013.

	10.	 L. Rising, The Pattern Almanac 2000,
Addison-Wesley, 2000.

	11.	 C. Alexander, The Timeless Way of Building,
Oxford Univ. Press, 1979.

	12.	 M. Adams, A.H.M. ter Hofstede, and M. La
Rosa, “Open Source Software for Workflow
Management: The Case of YAWL,” IEEE
Software, vol. 28, no. 3, 2011, pp. 16–19.

	13.	 M. Keen et al, Patterns: Implementing an

SOA Using an Enterprise Service Bus, IBM,
2004; www.redbooks.ibm.com/abstracts/
sg246346.html.

	14.	 F. Buschmann, K. Henney, and D. Schmidt,
“Past, Present, and Future Trends in Software
Patterns,” IEEE Software, vol. 24, no. 4,
2007, pp. 31–37.

	15.	 G. Meszaros and J. Doble, A Pattern Lan-
guage for Pattern Writing, Hillside Group;
http://hillside.net/index.php/a-pattern
-language-for-pattern-writing.

Gregor Hohpe is chief enterprise architect at Al-
lianz SE and a member of the Hillside Group. Contact
him at info@enterpriseintegrationpatterns.com.

Rebecca Wirfs-Brock is president of Wirfs-
Brock Associates and treasurer of the Hillside Group.
Contact her at rebecca@wirfs-brock.com.

Joseph W. Yoder is president of The Refactory,
Inc., and of the Hillside Group. Contact him at joe@
refactory.com.

Olaf Zimmermann is a professor and institute
partner at the Institute for Software at the University
of Applied Sciences of Eastern Switzerland, Rapper-
swil (HSR FHO). Contact him at ozimmerm@hsr.ch.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor,
New York, NY 10016-5997. IEEE Computer Society Publications Of-
fice: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821
8380; fax +1 714 821 4010. IEEE Computer Society headquarters: 2001
L St., Ste. 700, Washington, DC 20036. Subscription rates: IEEE Com-
puter Society members get the lowest rate of US$56 per year, which in-
cludes printed issues plus online access to all issues published since 1984.
Go to www.computer.org/subscribe to order and for more information
on other subscription prices. Back issues: $20 for members, $209.17 for
nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes
Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York,
NY, and at additional mailing offices. Canadian GST #125634188. Can-
ada Post Publications Mail Agreement Number 40013885. Return un-
deliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E
6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is not
made for profit; 2) includes this notice and a full citation to the origi-

nal work on the first page of the copy; and 3) does not imply IEEE en-
dorsement of any third-party products or services. Authors and their
companies are permitted to post the accepted version of IEEE-copy-
righted material on their own webservers without permission, pro-
vided that the IEEE copyright notice and a full citation to the origi-
nal work appear on the first screen of the posted copy. An accepted
manuscript is a version which has been revised by the author to in-
corporate review suggestions, but not the published version with co-
pyediting, proofreading, and formatting added by IEEE. For more in-
formation, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/re-
publish this material for commercial, advertising, or promotional pur-
poses or for creating new collective works for resale or redistribution
must be obtained from IEEE by writing to the IEEE Intellectual Prop-
erty Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-
permissions@ieee.org. Copyright © 2013 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first
page is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

