
24	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

Software
Technology

Product Line Engineering
Klaus Schmid and Eduardo Santana de Almeida

Product line engineering (PLE) is one of the few industry-ready methods
to manage reuse and variability in a defined way and thus bring software
development maturity to a more advanced stage. The goal is to deliver
specific product variants with fast cycle times at a manageable life-cycle
cost with a defined quality level. Many IT and software organizations
have started PLE but fail in industrializing the concepts and thus do
not achieve sustainable benefits. Authors Klaus Schmid and Eduardo
Santana de Almeida look at current technology for modeling and
managing variation and thus facilitate PLE. I look forward to hearing
from both readers and prospective column authors about this column
and the technologies you want to know more about. —Christof Ebert

Maybe you’ve had this experience with
system development: been there, done that.
This is a common problem because a new
system’s design can be rather similar to a
previous one, yet there are many subtle dif-
ferences. The software industry, like many
industries before it, realized that it must pro-
vide customers with well-adapted solutions.
This problem is by no means new, but it be-
comes more relevant as companies increas-
ingly specialize in terms of the products they
offer and as more variants must be built.

Many have attempted to address this
challenge, especially from the perspective
of maximizing reuse. Companies who face
this problem often start with an approach
where they copy the existing solution and
adapt it as needed (the so-called clone-and-
own model). But this approach doesn’t scale
well, which triggered product line engineer-
ing (PLE) approaches in the early 1990s. In-
dustrial practice always played a strong role
in PLE, and has even led to an industrial PLE

applications hall of fame (http://splc.net/
fame.html), which includes both large com-
panies, such as Boeing, Philips, Lucent, and
Toshiba, and many small companies.

So what is product line engineering? PLE
consists of two life cycles:1

•	 Domain engineering creates customiz-
able software and provides such assets to
individual projects.

•	 Application engineering uses this soft-
ware as the basis for developing a final
product.

In principle, each life cycle covers the
whole range of software development ac-
tivities. In addition, scoping, a form of re-
quirements management, is responsible for
determining to which life cycle incoming
requirements should go (see Figure 1). Of
course, in practice, these activities are often
not clearly differentiated, and a single devel-
oper might switch among them.

	 July/August 2013 | IEEE Software � 25

Software Technology

As a whole, well-executed PLE im-
pacts software development with pro-
cesses, business strategies, organi-
zational models, the main software
engineering stages (as in Figure 1), and
so on.

PLE’s importance to industrial prac-
tice is emphasized by ongoing work on
standards. At the International Organi-
zation for Standardization, a standard-
ization effort is currently under way to
provide guidelines for PLE at large,2
and the Object Management Group is
working on a standard for a variabil-
ity modeling language that can be inte-
grated with the UML (www.omgwiki.
org/variability/doku.php).

Variability Management
PLE tool support focuses almost exclu-
sively on a single, cross-cutting aspect
at the heart of PLE: variability manage-

ment (VM), or making software and
artifacts (such as requirements, tests,
and documentation) configurable in a
way that they can be jointly developed,
while each product still receives its spe-
cifically adapted version. VM tools sup-
port four main activities:

•	 modeling variability,
•	 modeling the relationship between

variability and a generic artifact,
•	 supporting configuration of generic

artifacts, and
•	 deriving customized products.

The idea of VM is to identify and
model characteristics that cause two
products to differ (their variabilities).
For example, for elevator systems,
there might be differences in terms
of how many stories a building has,
whether multiple elevators can coop-

erate, whether the elevator call uses a
single button or directional buttons,
and so on. These characteristics—the
basis of configuration decisions—are
called features and are summarized in
a variability model. Figure 2 shows an
example of such a model created with
EASy-Producer.

Typically, there are many dependen-
cies among decisions, and not all con-
figurations are valid—for example, our
elevator example features constraints,
such as the control strategy for cooper-
ating elevators, which can only be used
if there is more than one elevator. Con-
straints typically come from three main
sources:

•	 Higher-level decisions constrain
lower-level decisions; for example,
freight elevators (business-level de-
cision) use specific types of motors

An
al

ys
is

 fo
r p

ot
en

tia
l r

eu
se

(s
co

pi
ng

)• Product information
• New requirements
• Business planning

Reusable artifacts

Product

Domain
engineering

Feedback as development evolves

Information/product �ow
Development

activityTraceability

Domain-speci�c
(reusable) artifacts

Application
engineering

Requirements

Product
analysis

Domain
analysis

Product
testing

Domain
testing

Reusable testsImplementation

Product
implementation

Domain
implementation

Design

Product
design

Domain
design

Figure 1. The two-life-cycle process model of product line engineering. The domain engineering life cycle creates assets that are reused in

application engineering to build new systems.

26	 IEEE Software | www.computer.org/software

Software Technology

(technical decision).
•	 Domain properties might exclude

certain combinations; for example,
elevator team support isn’t compat-
ible with having a single elevator.

•	 The implementation might not sup-
port specific combinations, even if
they’re allowed in the domain.

Whatever the reason, constraint in-
formation is important because it en-
codes organizational knowledge about
the domain and existing implementa-
tions. Either the developers or the PLE
tools need to ensure that no miscon-
figurations will occur—they could lead

to incorrect behavior, if the resulting
system works at all. Here, configura-
tion support can significantly improve
development quality.

Configuration Support
Variability management tools automate
the creation of product-specific arti-
facts from generic artifacts using the
variability model and corresponding
configuration information as input (see
Figure 3). In Figure 2, we saw an ex-
ample of such a variability model along
with the corresponding configuration
for a specific product (values were al-
ready entered). Generated artifacts can

be requirements, code, tests, or even
complete products.

Figure 4 shows an approach that
applies this concept to IBM Rational
DOORS to derive instantiated require-
ments, which are shown in Figure 5.3
For illustration purposes, we chose an
approach that describes the variability
information directly within the require-
ments flow. For DOORS, this informa-
tion is typically encoded as attributes.
Of course, the important piece isn’t the
instantiation of a single artifact, but
rather that a PLE tool is able to coor-
dinate and execute all relevant instan-
tiation activities across all different ar-

Figure 2. An example of an elevator configuration using EASy-Producer. This demonstration system is rather simple and contains only a

few decisions and constraints. Real-world systems can have many decisions (on the order of several thousands) that can also form complex

hierarchies and can be governed by many constraints.

	 July/August 2013 | IEEE Software � 27

Software Technology

tifacts, from the requirements down to
code and test (for example, see Figures
6 and 7). So, along with the product-
specific requirements, we would get
product-specific documentation, imple-
mentation, and tests. Of course, dif-
ferent kinds of underlying assets (such
as different formats) require different
customization technologies. Moreover,
different approaches exist in terms of
whether variable parts are contained as
part of the overall generic artifact (as in
Figures 4 and 6), configuration happens
by removing some parts, or the variable
parts are separate and mixed into com-
mon parts on demand (aspect-oriented
techniques, for example, can be used
for this). This shows, however, that
in many industrial PLE cases, a large
number of different techniques must be
applied in a coordinated fashion. This
brings about its own level of complex-
ity, which corresponding tool support
can address.

As Table 1 indicates, many tools
support VM.5 Traditionally, most tools
were interactive; more recently, they’ve
become increasingly textual, similar
to special-purpose programming lan-
guages. To some extent, even multi
paradigm tools exist, which combine
textual and interactive approaches.
Another important distinction is the
expressiveness of the language for con-
figuration. The more expressive the
language, the easier it is for the user
to express all relevant concepts; how-
ever, this also leads to a more complex
realization of the tool. From a practi-
cal perspective, it’s important to know
which artifacts a tool supports out of
the box. Especially commercial tools
provide a broad range of different in-
stantiation mechanisms and connectors
to other development tools.

Modeling Complex
Product Line Situations
Often, it’s not sufficient to look at a sin-
gle product line, but several infrastruc-

tures must be combined to derive the fi-
nal products. Such situations are called
multi-software product lines. Recently,
even more complex supply chains came

into focus. These can either be em-
ployed within a single company (typi-
cally in large companies) or across mul-
tiple companies, leading to the notion

Customized artifact

Generic
artifacts

Requirements, code,
UML diagrams,
tests, and so on

Instantiation

Variability
model

Con�guration
information

Figure 3. The instantiation process. In product line engineering, generic artifacts that

cover the demands of different configurations must be specialized to the needs described by a

specific configuration; this is called instantiation.

Figure 4. An example of variability representation in DOORS.4 There are several ways of

mapping variability to requirements, including mappings to DOORS. The mapping shown here

directly represents variability as requirements objects. (Others represent it, for example, in the

form of requirements attributes.)

Figure 5. An example of instantiated product requirements in DOORS.4 This shows the

instance of the generic requirements model given in Figure 4.

28	 IEEE Software | www.computer.org/software

Software Technology

of software ecosystems. Figure 8 shows
such a situation for a hypothetical med-
ical product line. Every box denotes a
different product line infrastructure,

and the results from one product line
directly provide input to another. In this
case, rather complex networks can oc-
cur in practice through a combination

of product line composition and spe-
cialization. A consequence of such a
situation is that all individual product
lines have their own variability model,
but these could also be dependent on
each other. Here, tool support greatly
enhances software production because
all dependency management and pro-
duction activities can be automated.

Although ecosystems are a general-
ization of PLE, few PLE tools address
the ecosystems situation explicitly by
providing product line composition
and specialization mechanisms. One of
these is EASy-Producer. This tool gen-
eralizes the existing notion of product
lines in two important ways:

•	 Reusable infrastructure and final
products are subsumed by the more

Target target = new Target(self.getId(), (Integer) self.getValue());
/*
 * #if($controlling_synchronized == true)
 */
ElevatorSimulator.getInstance().getSuperController().addTarget(target, iElevatorIndex, false);
MainWindow.getInstance().highlightFloorButtons(id, true, iComp);
MainWindow.getInstance().highlightFloorButtons(id, false, Math.abs(iComp – 1));
/*
 *#else
 */
ElevatorSimulator.getInstance().getController(iElevatorIndex).addFloor(target);
setHighlight(icomp, true);
setHighlight(Math.abs(iComp – 1), false);
/*
 * #end
 */

} else {
 Target target = new Target(self.getId(), (Integer) self.getValue());
 /*
 * /*
 ElevatorSimulator.getInstance().getSuperController().addTarget(target, iElevatorIndex, false);
 MainWindow.getInstance().highlightFloorButtons(id, true, iComp);
 MainWindow.getInstance().highlightFloorButtons(id, false, Math.abs(iComp – 1));
 /*
 * /*
}

Figure 6. An example of code with variability. One technique would be to use an if-then-else preprocessor construct in Java code. Here,

velocity is used as the preprocessor (http://velocity.apache.org).

Figure 7. An example of code after instantiation. The preprocessor directives have been resolved. Apart from instantiation, the code

corresponds to the code in Figure 6.

Graphics

Medical imaging

2D-image analysis 3D streaming

Networking

Medical product A Medical product B Medical product C

Figure 8. A complex product line/ecosystem situation. Different product line

infrastructures can either be provided by different organizations within a single company or

created by different companies.

	 July/August 2013 | IEEE Software � 29

Software Technology
Ta

b
l
e

 1 An overview of some product line engineering tools.

Name URL I\T*

Type of configura-
tion information
handled

Type of artifacts
supported

Multi-
product
line
support

Com-
mercial
support Comments

Dopler http://ase.jku.at/
dopler

I Boolean, numbers,
strings, sets, lists,
compositions; con-
straints can be arbi-
trary Java code

Textual (arbitrary):
Spring XML,
Eclipse Plug-in
Framework,
Microsoft Word

Yes No Evolution
support,
infrastruc-
ture for tool
integration,
specialized
tools for com-
pany-specific
situations

EASy-Producer www.uni-
hildesheim.de/index.
php?id=8035

I/T Boolean, number,
strings, sets, lists,
compositions, refer-
ences; constraints
include quantifiers,
explicit type system
for variability, support
of defaults, modeling
and configuration
integrated

Textual (arbitrary):
several company-
specific artifacts

Yes No Support of
ecosystems,
partial
instantiation
of artifacts,
infrastructure
for tool inte-
gration

FeatureIDE wwwiti.cs.uni
-magdeburg.de/
iti_db/research/
featureide

I Boolean; constraints
are propositional
formulas

Textual (arbitrary):
AspectJ, C, C#,
Java 1.5, Haskell,
XML

No No Integration
with sev-
eral special
frameworks
and research
prototypes

Feature Modeller
(FM)

www.metadoc.
de/anforderungs
management/
werkzeuge/fm

I Boolean; constraints
are propositional
formulas

Requirements
information:
DOORS integration

No Yes

GEARS www.biglever.com/
overview/software_
product_lines.html

I Boolean, strings,
enumerations, num-
bers, sets, records;
constraints are
formulas

Textual, with many
third-party con-
nectors: Visual
Studio, Eclipse,
DOORS, Rational
Rhapsody, Enter-
prise Architect,
various CM sys-
tems

Yes Yes Support for
multiproduct
lines, infra-
structure for
tool integra-
tion

pure::variants www.pure-systems.
com/pure_
variants.49.0.html

I Boolean, strings,
enumerations, num-
bers, sets, records,
many special data
types such as dates;
constraints are prolog
formulas

Textual, with many
third-party con-
nectors: DOORS,
Rational Rhapsody,
Enterprise Archi-
tect, Simulink,
AUTOSAR, some
CM systems

Yes Yes Eclipse
integration,
infrastructure
for tool inte-
gration

Compositional
Variability
Management

www.cvm
-framework.org

I/T Boolean, numbers,
strings, sets (cardi-
nality); constraints
with numerical rela-
tions

Textual (arbitrary):
program code,
component model-
ing, DOORS

Yes No

* Support for modeling variability can be interactive (I) or textual (T).

30	 IEEE Software | www.computer.org/software

Software Technology

general concept of a project with
variability; thus, there’s no longer a
strong distinction between a prod-
uct and the reuse infrastructure
as basically as in all other tools. A
product becomes the special case
of a project with variability where
all development time variability is
resolved.

•	 EASy-Producer supports partial in-
stantiation both for configurations
and for artifacts.

For example, in Figure 8, 3D streaming
could be derived from graphics by bind-
ing some, but not all, variability and,
perhaps, adding some further function-
ality. Medical imaging would then be
derived by composing (and instantiat-

ing) the two existing infrastructures,
2D-image analysis and 3D streaming.
So, in this example, three different
products are derived. The challenge is
that the tool needs to keep track of all
relevant artifacts throughout the whole
ecosystem.

In principle, this can then be iterated
to model rather complex supplier net-
works. The approach is inspired from
industrial experience and is currently
evaluated in several industrial projects.
We hypothesize that tools will increas-
ingly pick up these concepts.

B ecause the need to develop not
only single products but whole
sets of customized systems is

an increasingly impor-
tant need of compa-
nies, PLE continues to
receive more attention.
Industrial experience
shows that related ap-
proaches can drastically
reduce costs, time to
market, defect density,
and maintenance costs.1
With increasing matu-
rity in the area of soft-
ware development, we
expect that more and
more companies will
find themselves in situ-
ations where they pro-
duce variants of prod-
ucts that satisfy needs
of specialized markets
and customers. Thus,
PLE, along with its
corresponding tools,
will become the norm
in software engineer-
ing because it better fits
the business strategies
of modern software in-
dustry than more tra-
ditional project-focused
development.

Acknowledgments
The Brazilian National Council for Scien-
tific and Technological Development (CNPq)
partially supported Klaus Schmid during the
course of this work. The National Institute
of Science and Technology for Software En-
gineering (INES), funded by CNPq and FA-
CEPE, and FAPESB, also partially supported
this work.

References
	 1.	 F. van der Linden, K. Schmid, and E. Rommes,

Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineer-
ing, Springer, 2007.

	 2.	 T. Käkölä, “Standards Initiatives for Software
Product Line Engineering and Management
within the International Organization for
Standardization,” Proc. 43rd Hawaii Int’l
Conf. System Sciences (HICSS 10), IEEE CS,
2010, pp. 1–10.

	 3.	 K. Schmid, K. Krennrich, and M. Eisenbarth,
“Requirements Management for Product
Lines: Extending Professional Tools,” Proc.
10th Int’l Software Product Line Conf., IEEE,
2006, pp. 113–122.

	 4.	 K. Schmid and M. Schank, “PuLSE-BEAT:
A Decision Support Tool for Scoping
Product Lines,” Software Architectures for
Product Families, LNCS 1951, Springer,
2000, pp. 64–74.

	 5.	 L.B. Lisboa et al., “A Systematic Review of
Domain Analysis Tools,” Information and
Software Technology J., vol. 52, no. 1, 2010,
pp. 1–13.

Klaus Schmid is a professor in software engi-
neering and head of the Computer Science Institute
at the University of Hildesheim. Contact him at
schmid@sse.uni-hildesheim.de.

Eduardo Santana de Almeida is an assis-
tant professor in software engineering at the Federal
University of Bahia and head of engineering at the
Fraunhofer Project Center for Software and Systems
Engineering. Contact him at esa@dcc.ufba.br.

IEEE Computer Society is offering $40,000 in student
scholarships, from $1,000 and up, to recognize and reward

active student volunteer leaders who show promise
in their academic and professional efforts.

Graduate students and undergraduate students in their final
two years, enrolled in a program in electrical or computer
engineering, computer science, information technology,

or a well-defined computer-related field, are eligible.
IEEE Computer Society student membership is required.

Apply now! Application deadline is 30 September 2013.
For more information, go to www.computer.org/scholarships,

or email patricia.edwards@computer.org.

To join IEEE Computer Society,
visit www.computer.org/membership.

Richard E. Merwin
Student Leadership

Scholarship

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

