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Product line engineering (PLE) is one of the few industry-ready methods 
to manage reuse and variability in a defined way and thus bring software 
development maturity to a more advanced stage. The goal is to deliver 
specific product variants with fast cycle times at a manageable life-cycle 
cost with a defined quality level. Many IT and software organizations 
have started PLE but fail in industrializing the concepts and thus do 
not achieve sustainable benefits. Authors Klaus Schmid and Eduardo 
Santana de Almeida look at current technology for modeling and 
managing variation and thus facilitate PLE. I look forward to hearing 
from both readers and prospective column authors about this column 
and the technologies you want to know more about. —Christof Ebert

Maybe you’ve had this experience with 
system development: been there, done that. 
This is a common problem because a new 
system’s design can be rather similar to a 
previous one, yet there are many subtle dif-
ferences. The software industry, like many 
industries before it, realized that it must pro-
vide customers with well-adapted solutions. 
This problem is by no means new, but it be-
comes more relevant as companies increas-
ingly specialize in terms of the products they 
offer and as more variants must be built.

Many have attempted to address this 
challenge, especially from the perspective 
of maximizing reuse. Companies who face 
this problem often start with an approach 
where they copy the existing solution and 
adapt it as needed (the so-called clone-and-
own model). But this approach doesn’t scale 
well, which triggered product line engineer-
ing (PLE) approaches in the early 1990s. In-
dustrial practice always played a strong role 
in PLE, and has even led to an industrial PLE 

applications hall of fame (http://splc.net/
fame.html), which includes both large com-
panies, such as Boeing, Philips, Lucent, and 
Toshiba, and many small companies.

So what is product line engineering? PLE 
consists of two life cycles:1

•	 Domain engineering creates customiz-
able software and provides such assets to 
individual projects.

•	 Application engineering uses this soft-
ware as the basis for developing a final 
product.

In principle, each life cycle covers the 
whole range of software development ac-
tivities. In addition, scoping, a form of re-
quirements management, is responsible for 
determining to which life cycle incoming 
requirements should go (see Figure 1). Of 
course, in practice, these activities are often 
not clearly differentiated, and a single devel-
oper might switch among them. 
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As a whole, well-executed PLE im-
pacts software development with pro-
cesses, business strategies, organi-
zational models, the main software 
engineering stages (as in Figure 1), and 
so on.

PLE’s importance to industrial prac-
tice is emphasized by ongoing work on 
standards. At the International Organi-
zation for Standardization, a standard-
ization effort is currently under way to 
provide guidelines for PLE at large,2 
and the Object Management Group is 
working on a standard for a variabil-
ity modeling language that can be inte-
grated with the UML (www.omgwiki.
org/variability/doku.php).

Variability Management
PLE tool support focuses almost exclu-
sively on a single, cross-cutting aspect 
at the heart of PLE: variability manage-

ment (VM), or making software and 
artifacts (such as requirements, tests, 
and documentation) configurable in a 
way that they can be jointly developed, 
while each product still receives its spe-
cifically adapted version. VM tools sup-
port four main activities: 

•	 modeling variability,
•	 modeling the relationship between 

variability and a generic artifact,
•	 supporting configuration of generic 

artifacts, and
•	 deriving customized products.

The idea of VM is to identify and 
model characteristics that cause two 
products to differ (their variabilities). 
For example, for elevator systems, 
there might be differences in terms 
of how many stories a building has, 
whether multiple elevators can coop-

erate, whether the elevator call uses a 
single button or directional buttons, 
and so on. These characteristics—the 
basis of configuration decisions—are 
called features and are summarized in 
a variability model. Figure 2 shows an 
example of such a model created with 
EASy-Producer. 

Typically, there are many dependen-
cies among decisions, and not all con-
figurations are valid—for example, our 
elevator example features constraints, 
such as the control strategy for cooper-
ating elevators, which can only be used 
if there is more than one elevator. Con-
straints typically come from three main 
sources: 

•	 Higher-level decisions constrain 
lower-level decisions; for example, 
freight elevators (business-level de-
cision) use specific types of motors 
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Figure 1. The two-life-cycle process model of product line engineering. The domain engineering life cycle creates assets that are reused in 

application engineering to build new systems. 
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(technical decision).
•	 Domain properties might exclude 

certain combinations; for example, 
elevator team support isn’t compat-
ible with having a single elevator.

•	 The implementation might not sup-
port specific combinations, even if 
they’re allowed in the domain. 

Whatever the reason, constraint in-
formation is important because it en-
codes organizational knowledge about 
the domain and existing implementa-
tions. Either the developers or the PLE 
tools need to ensure that no miscon-
figurations will occur—they could lead 

to incorrect behavior, if the resulting 
system works at all. Here, configura-
tion support can significantly improve 
development quality. 

Configuration Support
Variability management tools automate 
the creation of product-specific arti-
facts from generic artifacts using the 
variability model and corresponding 
configuration information as input (see 
Figure 3). In Figure 2, we saw an ex-
ample of such a variability model along 
with the corresponding configuration 
for a specific product (values were al-
ready entered). Generated artifacts can 

be requirements, code, tests, or even 
complete products. 

Figure 4 shows an approach that 
applies this concept to IBM Rational 
DOORS to derive instantiated require-
ments, which are shown in Figure 5.3 
For illustration purposes, we chose an 
approach that describes the variability 
information directly within the require-
ments flow. For DOORS, this informa-
tion is typically encoded as attributes. 
Of course, the important piece isn’t the 
instantiation of a single artifact, but 
rather that a PLE tool is able to coor-
dinate and execute all relevant instan-
tiation activities across all different ar-

Figure 2. An example of an elevator configuration using EASy-Producer. This demonstration system is rather simple and contains only a 

few decisions and constraints. Real-world systems can have many decisions (on the order of several thousands) that can also form complex 

hierarchies and can be governed by many constraints.
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tifacts, from the requirements down to 
code and test (for example, see Figures 
6 and 7). So, along with the product-
specific requirements, we would get 
product-specific documentation, imple-
mentation, and tests. Of course, dif-
ferent kinds of underlying assets (such 
as different formats) require different 
customization technologies. Moreover, 
different approaches exist in terms of 
whether variable parts are contained as 
part of the overall generic artifact (as in 
Figures 4 and 6), configuration happens 
by removing some parts, or the variable 
parts are separate and mixed into com-
mon parts on demand (aspect-oriented 
techniques, for example, can be used 
for this). This shows, however, that 
in many industrial PLE cases, a large 
number of different techniques must be 
applied in a coordinated fashion. This 
brings about its own level of complex-
ity, which corresponding tool support 
can address. 

As Table 1 indicates, many tools 
support VM.5 Traditionally, most tools 
were interactive; more recently, they’ve 
become increasingly textual, similar 
to special-purpose programming lan-
guages. To some extent, even multi
paradigm tools exist, which combine 
textual and interactive approaches. 
Another important distinction is the 
expressiveness of the language for con-
figuration. The more expressive the 
language, the easier it is for the user 
to express all relevant concepts; how-
ever, this also leads to a more complex 
realization of the tool. From a practi-
cal perspective, it’s important to know 
which artifacts a tool supports out of 
the box. Especially commercial tools 
provide a broad range of different in-
stantiation mechanisms and connectors 
to other development tools. 

Modeling Complex  
Product Line Situations
Often, it’s not sufficient to look at a sin-
gle product line, but several infrastruc-

tures must be combined to derive the fi-
nal products. Such situations are called 
multi-software product lines. Recently, 
even more complex supply chains came 

into focus. These can either be em-
ployed within a single company (typi-
cally in large companies) or across mul-
tiple companies, leading to the notion 
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Figure 3. The instantiation process. In product line engineering, generic artifacts that 

cover the demands of different configurations must be specialized to the needs described by a 

specific configuration; this is called instantiation.

Figure 4. An example of variability representation in DOORS.4 There are several ways of 

mapping variability to requirements, including mappings to DOORS. The mapping shown here 

directly represents variability as requirements objects. (Others represent it, for example, in the 

form of requirements attributes.)

Figure 5. An example of instantiated product requirements in DOORS.4 This shows the 

instance of the generic requirements model given in Figure 4.
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of software ecosystems. Figure 8 shows 
such a situation for a hypothetical med-
ical product line. Every box denotes a 
different product line infrastructure, 

and the results from one product line 
directly provide input to another. In this 
case, rather complex networks can oc-
cur in practice through a combination 

of product line composition and spe-
cialization. A consequence of such a 
situation is that all individual product 
lines have their own variability model, 
but these could also be dependent on 
each other. Here, tool support greatly 
enhances software production because 
all dependency management and pro-
duction activities can be automated.

Although ecosystems are a general-
ization of PLE, few PLE tools address 
the ecosystems situation explicitly by 
providing product line composition 
and specialization mechanisms. One of 
these is EASy-Producer. This tool gen-
eralizes the existing notion of product 
lines in two important ways:

•	 Reusable infrastructure and final 
products are subsumed by the more 

Target target = new Target(self.getId(), (Integer) self.getValue());
/*
 * #if($controlling_synchronized == true)
 */
ElevatorSimulator.getInstance().getSuperController().addTarget(target, iElevatorIndex, false);
MainWindow.getInstance().highlightFloorButtons(id, true, iComp);
MainWindow.getInstance().highlightFloorButtons(id, false, Math.abs(iComp – 1));
/*
 *#else
 */
ElevatorSimulator.getInstance().getController(iElevatorIndex).addFloor(target);
setHighlight(icomp, true);
setHighlight(Math.abs(iComp – 1), false);
/*
 * #end
 */

} else {
    Target target = new Target(self.getId(), (Integer) self.getValue());
    /*
     *                   /*
    ElevatorSimulator.getInstance().getSuperController().addTarget(target, iElevatorIndex, false);
    MainWindow.getInstance().highlightFloorButtons(id, true, iComp);
    MainWindow.getInstance().highlightFloorButtons(id, false, Math.abs( iComp – 1));
    /*
     *                   /*
}

Figure 6. An example of code with variability. One technique would be to use an if-then-else preprocessor construct in Java code. Here, 

velocity is used as the preprocessor (http://velocity.apache.org).

Figure 7. An example of code after instantiation. The preprocessor directives have been resolved. Apart from instantiation, the code 

corresponds to the code in Figure 6. 
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Figure 8. A complex product line/ecosystem situation. Different product line 

infrastructures can either be provided by different organizations within a single company or 

created by different companies. 
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 1  An overview of some product line engineering tools.

Name URL I\T*

Type of configura-
tion information 
handled

Type of artifacts 
supported

Multi-
product 
line 
support

Com-
mercial 
support Comments

Dopler http://ase.jku.at/
dopler

I Boolean, numbers, 
strings, sets, lists, 
compositions; con-
straints can be arbi-
trary Java code

Textual (arbitrary): 
Spring XML, 
Eclipse Plug-in 
Framework, 
Microsoft Word

Yes No Evolution 
support, 
infrastruc-
ture for tool 
integration, 
specialized 
tools for com-
pany-specific 
situations

EASy-Producer www.uni-
hildesheim.de/index.
php?id=8035

I/T Boolean, number, 
strings, sets, lists, 
compositions, refer-
ences; constraints 
include quantifiers, 
explicit type system 
for variability, support 
of defaults, modeling 
and configuration 
integrated

Textual (arbitrary): 
several company-
specific artifacts

Yes No Support of 
ecosystems, 
partial 
instantiation 
of artifacts, 
infrastructure 
for tool inte-
gration

FeatureIDE wwwiti.cs.uni 
-magdeburg.de/
iti_db/research/
featureide

I Boolean; constraints 
are propositional 
formulas

Textual (arbitrary): 
AspectJ, C, C#, 
Java 1.5, Haskell, 
XML

No No Integration 
with sev-
eral special 
frameworks 
and research 
prototypes

Feature Modeller 
(FM)

www.metadoc. 
de/anforderungs 
management/
werkzeuge/fm

I Boolean; constraints 
are propositional 
formulas

Requirements 
information: 
DOORS integration  

No Yes

GEARS www.biglever.com/
overview/software_
product_lines.html

I Boolean, strings, 
enumerations, num-
bers, sets, records; 
constraints are 
formulas

Textual, with many 
third-party con-
nectors: Visual 
Studio, Eclipse, 
DOORS, Rational 
Rhapsody, Enter-
prise Architect, 
various CM sys-
tems

Yes Yes Support for 
multiproduct 
lines, infra-
structure for 
tool integra-
tion

pure::variants www.pure-systems.
com/pure_
variants.49.0.html

I Boolean, strings, 
enumerations, num-
bers, sets, records, 
many special data 
types such as dates; 
constraints are prolog 
formulas 

Textual, with many 
third-party con-
nectors: DOORS, 
Rational Rhapsody, 
Enterprise Archi-
tect, Simulink, 
AUTOSAR, some 
CM systems

Yes Yes Eclipse 
integration, 
infrastructure 
for tool inte-
gration

Compositional 
Variability  
Management

www.cvm 
-framework.org

I/T Boolean, numbers, 
strings, sets (cardi-
nality); constraints 
with numerical rela-
tions

Textual (arbitrary): 
program code, 
component model-
ing, DOORS

Yes No

* Support for modeling variability can be interactive (I) or textual (T).
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general concept of a project with 
variability; thus, there’s no longer a 
strong distinction between a prod-
uct and the reuse infrastructure 
as basically as in all other tools. A 
product becomes the special case 
of a project with variability where 
all development time variability is 
resolved.

•	 EASy-Producer supports partial in-
stantiation both for configurations 
and for artifacts. 

For example, in Figure 8, 3D streaming 
could be derived from graphics by bind-
ing some, but not all, variability and, 
perhaps, adding some further function-
ality. Medical imaging would then be 
derived by composing (and instantiat-

ing) the two existing infrastructures, 
2D-image analysis and 3D streaming. 
So, in this example, three different 
products are derived. The challenge is 
that the tool needs to keep track of all 
relevant artifacts throughout the whole 
ecosystem. 

In principle, this can then be iterated 
to model rather complex supplier net-
works. The approach is inspired from 
industrial experience and is currently 
evaluated in several industrial projects. 
We hypothesize that tools will increas-
ingly pick up these concepts. 

B ecause the need to develop not 
only single products but whole 
sets of customized systems is 

an increasingly impor-
tant need of compa-
nies, PLE continues to 
receive more attention. 
Industrial experience 
shows that related ap-
proaches can drastically 
reduce costs, time to 
market, defect density, 
and maintenance costs.1 
With increasing matu-
rity in the area of soft-
ware development, we 
expect that more and 
more companies will 
find themselves in situ-
ations where they pro-
duce variants of prod-
ucts that satisfy needs 
of specialized markets 
and customers. Thus, 
PLE, along with its 
corresponding tools, 
will become the norm 
in software engineer-
ing because it better fits 
the business strategies 
of modern software in-
dustry than more tra-
ditional project-focused 
development.
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