
0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 33

FOCUS: GUEST EDITORS’ INTRODUCTION

PROGRAMMING LANGUAGES
ARE SO FUNDAMENTAL to how
software is created that we sometimes
forget how they came to be. After the
first computers were created in the
1940s and ’50s, programming lan-
guages were somewhat slow to de-
velop. This can be partly attributed to
the meager resources of the available
computers, which were often too lim-
ited for anything other than machine
code programming (imagine this: as-
sembly languages were a luxury en-
joyed by only a few!).

However, it was far from clear to
early computer pioneers what utility

programming languages would be,
let alone what form they should
take. The only languages from the
’50s that still have wide(ish) recog-
nition are Fortran (1957) and Lisp
(1958). The ’60s and ’70s were the
decades that molded programming
languages into the forms we recog-
nize today. ALGOL 60 started the
process, spawning children from
Pascal (1968) to C (1972); around
that same time, Lisp spawned Small-
talk (1972), and innumerable lan-
guages since have taken inspiration
from this raw DNA.

If we’re guilty of forgetting where

languages came from, we’re also
guilty of ignoring where they’re go-
ing. The notion of “acceptable main-
stream programming language”
changes slowly. This isn’t surpris-
ing: changing an organization’s pro-
gramming language can be disrup-
tive. Some staff members can’t, or
won’t, retrain; a new staff is hard to
find, and productivity is often low in
the changeover period. So, given all
these challenges, why would anyone
bother changing?

Cast your mind back 20 years.
A decent programmer might have
been using C for everything. C is still

Laurence Tratt, King’s College London

Adam Welc, Oracle Labs

s5gei.indd 33 8/7/14 1:26 PM

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

good for many things—from ker-
nels to resource-effi cient utilities—
but it’s weak in other areas, such as
string manipulation in data process-
ing, for example. Trying to operate
on C strings is a recipe for buffer
overruns and memory leaks. A de-
cent programmer today might write
equivalent code in Python in half the
time, and the resulting script would
be half as short and less prone to
long-term bugs. Features that were
once unimaginable, or that seemed
decadent on slow computers, are
now commonplace, from recursive
functions to garbage collection to
closures. Clever compilation tactics
have brought even slow-coach lan-
guages up to speed, and program-
ming language paradigms seem ever
more fl uid as designers look beyond
traditional horizons for inspiration.

One of the biggest changes in how
we perceive programming languages
is that we no longer think of them
as just languages. Programmers ex-
pect extensive libraries and good
performance from a language from
its fi rst appearance. We also expect
more from the tools that surround
a language: good IDEs, debuggers,
and profi lers are now thought of as
essential for a language to be worth
trying. It seems likely that expecta-
tions such as these will continue to

grow. You might think this would
increase the barrier to entry for new
languages, but there’s currently no
shortage of new languages.

It often feels that we can never
meet user expectations: as fast as we
can improve programming languages,
we’re asked to do more with them.
Our success stories are so many that
we don’t even think of them: today’s
languages are without a doubt easier
to use overall than those of yesteryear
for tasks big and small. But some-
times the results are harder to gauge.
For example, when the Web took off,
users expected programming lan-
guages to adapt to the needs of web-
sites; some of the resulting languages
made it easy to quickly get something
up and running, but made long-term
maintenance diffi cult. Truth be told,
we’re unrealistic about how easy it is
for programming languages to adapt.
Most notably, when hardware design-
ers found that they’d run out of easy
improvements to sequential program
performance, they turned to pro-
gramming language designers and im-
plementers and said, “You’ll have to
make your languages and programs
concurrent now.” We made concur-
rent languages quickly, but beyond a
few examples, we still haven’t worked
out how to use them very well. Per-
haps we one day will—or perhaps

we should be realistic that while pro-
gramming languages have adapted
well to many problems, we can’t ex-
pect them to dig us out of every hole.

One thing we know for certain is
that the dominant programming lan-
guage of today is the legacy language
of tomorrow. Sometimes languages
are sidelined due to fashion, but
changes are generally due to new lan-
guages being applicable to a wider or
different class of problems than their
predecessors. Maybe one day this
process will stop, but it seems un-
likely that you’d lose money betting
on it to continue for a while yet.

W e hope this special issue
gives a glimpse of what
might be coming next

in programming languages. We’ve
tried to interpret this liberally be-
cause we believe programming lan-
guages are as diverse now as at any
point in their history, a trend that
seems to be increasing. We’re fortu-
nate to present you with articles cov-
ering a variety of subjects, from dif-
ferent ways of editing programs to
different ways of implementing pro-
gramming languages to implement-
ing different programming language
paradigms; from more effective ways
of utilizing domain-specifi c lan-
guages to emerging techniques for
parallel execution of dynamically
typed languages. We’re also lucky to
have a thought-provoking interview
with Gilad Bracha, one of the most
interesting programming language
designers at work today. This special
issue should, at the very least, give
you food for thought about what to-
morrow might bring.

LAURENCE TRATT is a Reader at King’s College London,
where he leads the software development team in the Depart-
ment of Informatics. Contact him via http://tratt.net/laurie.

ADAM WELC is a Principal Member of Technical Staff at
Oracle Labs, where he works in the Virtual Machine Research
Group. Contact him via http://adamwelc.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

s5gei.indd 34 8/7/14 1:26 PM

