
HAL Id: hal-01089268
https://hal.science/hal-01089268

Submitted on 1 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multitier diversification in Web-based software
applications

Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan
Daubert, Franck Fleurey, Martin Monperrus, Hui Song, Maxime Tricoire

To cite this version:
Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan Daubert, et al.. Multi-
tier diversification in Web-based software applications. IEEE Software, 2015, 32 (1), pp.83–90.
�10.1109/MS.2014.150�. �hal-01089268�

https://hal.science/hal-01089268
https://hal.archives-ouvertes.fr

Multi-tier diversification in Web-based software applications

Simon Allier 1 Olivier Barais 1,3 Benoit Baudry 1 Johann Bourcier 1,3

Erwan Daubert 1 Franck Fleurey 4 Martin Monperrus 1,2 Hui Song 4

Maxime Tricoire1

(1) Inria, France (2) University of Lille, France
(3) University of Rennes 1, France (4) Sintef, Norway

Reuse! Modularity! Among all computing do-
mains, Internet Computing has long been an example
of the application of those two software engineering
mottos.

Web applications are formed from reusable com-
ponents all over the software stack. Both on the
client and the server side, web-specific libraries and
frameworks enable creative developers to wrap up
rich applications within very short time. Massive
reuse happens both on the client side (on the browser)
and on the server side (in the data-center). For in-
stance, jQuery is a popular client-side library writ-
ten in JavaScript, which drastically improves the de-
velopment of responsive web applications. Spring is
an example of a server-side technology which is used
on millions of servers. The open-source philosophy
and ecosystem is one of the backbones of this mas-
sive reuse in web applications.

In addition some very modular web applications
have become extremely successful. For instance, ac-
cording to our empirical data, more than 100k+ web-
sites use Wordpress, a blogging and content man-
agement system (cf. Sidebar 2). The architecture
of Wordpress is extremely modular. Every single
point of the application can be tweaked or extended
through “plugins” in an easy way. Combined with
a high-quality documentation and a vibrant commu-
nity, this results in thousands of plugins that can be
instantly installed on any server running Wordpress.

Application monoculture

Reuse and modularity are key for liberating creativity
and entrepreneurship in the Internet world. However,
this bright world has a darker side. The problem
is that they participate in creating a new form of
massive-scale monoculture. This is what we discuss
and address in this paper.

0BB, FF, MM wrote the paper; OB, BB, JB, FF designed

the MDMS application; SA, OB, JB, ED, FF, HS, MT all

participated in the development, the deployment and the di-

versification of the MDMS web application

What is monoculture in computing? The concept
of software monoculture refers to a computing en-
vironment that is largely dominated by the same
software application [10]. For instance, the Win-
dows operating system has long been considered as a
monoculture on desktop machines. The term “mono-
culture” comes from agriculture, where it has been
shown that exploiting the very same species on large
areas is a bad practice. Similarly, “software mono-
culture” has a negative connotation [10]. The main
problem of software monoculture are so-called BOBE
attacks: break once, break everywhere. With a large
monoculture, attackers can exploit flaws and common
failure modes on a massive scale.

Operating systems (OS) and database monoculture
is known for a long time [9], both are key compo-
nents of the general computing infrastructure. How-
ever, Internet Computing has introduced a new kind
of monoculture, which could be called “application
monoculture”. The novelty is that monoculture ap-
pears in application-level code (libraries, frameworks,
the application itself), where developers rely on leaky
abstractions and are more concerned about time-to-
market and useful features for their clients than secur-
ing their code This monoculture might present even
more risks than the monoculture of operating sys-
tems, which are developed over long periods of time,
with security concerns in mind.

Let us consider the example of the content manage-
ment application Wordpress. In the top 500.000 web
sites 1, we found 106.412 sites running Wordpress.
Among these sites, 65.558 (64%) use the Akismet
plugin, which checks potential spams in Wordpress
comments. 21.849 web sites (22,6%) use the Jetpack
plugin, which has a known SQL injection vulnerabil-
ity, even in the latest version. This demonstrates two
levels of application monoculture: at the level of the
application (Wordpress), and at the level of plugins.
A single attack on a zero-day flaw on Wordpress is
able to compromise thousands of websites.

On the one hand, reuse and modularity favor much

1according to http://www.alexa.com/

1

http://www.alexa.com/

writing the next killer application. On the other
hand, reuse and modularity facilitates much the next
massive BOBE attack. There is a tension between
reuse and dependability. Should we give up one or
the other? Not necessarily.

In this paper, we propose using software diversifi-
cation in multiple components of web applications to
reconcile those two aspects. We identify key enablers
for the effective diversification of software, especially
at the application-code level. Our vision is that it is
possible to combine different software diversification
strategies, from the deployment of different vendor so-
lutions, to fine-grained code transformations, in order
to provide different forms of protection. We report on
an innovative diversification experiment consisting in
injecting multi-tier software diversity in a prototypi-
cal web application.

Multi-tier software diversity

A web application is typically composed of server-side
and client-side code working in concert. The client
side code is mostly written in JavaScript and runs
in a browser. The server side of a web application
is a software stack composed of an operating system
and a web server, a set of libraries, frameworks, and
application-specific code.

Software diversity has long been promoted to en-
hance software dependability. Since the seminal work
of Cohen[3] and Forrest [5], there has been signifi-
cant efforts towards automatic software diversifica-
tion (see Sidebar 1 for more details). Current auto-
mated software diversification techniques operate at
assembly-code level and are meant to mitigate mem-
ory safety vulnerabilities (e.g., stack overflow). Some
of these techniques are successfully implemented in
mainstream operating systems, making each operat-
ing system installation different from the others and
thus mitigating the massive reuse of exploits. For
example, address space layout randomization is im-
plemented in all recent versions of Windows, Linux,
Mac OS.

We believe that software diversification must ad-
dress software layers beyond assembly code, to face
the emergence of a new form of monoculture. The
novelty of our proposal, with respect to the soft-
ware diversity state of the art, is to diversify the
application-level code (for example, diversify the
business logics of the application), focusing on the
technical layers found in web applications. In partic-
ular, web server deployment usually adopts a form of
the Reactor architecture pattern, for scalability pur-
poses: multiple copies of the server software stack,
called request handlers, are deployed behind a load
balancer, which dispatches all incoming requests.
Currently all handlers are deployed as clones, but this

Sidebar 1: Software Diversification

Cohen [3] described 14 code diversification tech-
niques to be combined for protecting operating
systems. Forrest and colleagues [5] emphasized
the need for building diverse computing systems
and suggested diversification based on code ma-
nipulation. Since these seminal works, several
approaches have implemented automatic diversi-
fication transformations, at machine-code level,
and have combined them to increase the depend-
ability of software systems. Each kind of trans-
formation targets a specific kind of vulnerability,
and several work have started to combine them
to get a more complete protection. These ‘ìnte-
grated” software diversity techniques are particu-
larly interesting with respect to multi-tier diver-
sification. We now have a brief look at some of
them and their defense objectives.
Bhatkar et al. [12] thwart code injection attacks
by integrating various forms of randomization:
randomize base addresses of memory regions to
make the address of objects unpredictable; per-
mute the order of variables in the stack; and in-
troduce random gaps in the memory layout. Ja-
cob et al. [13] target tamper-resistance, through
superoptimization to identify semantically equiv-
alent instruction sequences, and other trans-
formations that change the set of instructions
and operands. The GENESIS project mitigates
return-to-libc attacks and code injection by im-
plementing a virtual machine that integrates call-
ing sequence diversity and instruction set ran-
domization through software dynamic transla-
tion [16]. Wang et al. [15] obfuscate critical soft-
ware modules in survivability infrastructures by
combining control-flow flattening and introduc-
tion of aliases.
For the readers interested in more references, we
refer to the recent survey by Larsen and col-
leagues [14], and to the different levels of mov-
ing target defenses summarized by Okhravi and
colleagues [8].

2

kind of architecture provides a natural setting for di-
versification.

We call multi-tier diversification the fact of diversi-
fying several application software components simul-
taneously. This approach can rely on both natural
software diversity and automatic diversity. Natural
software diversity designates diverse software mod-
ules that provide equivalent functionalities but that
are developed by different communities or companies.
For example, there is a natural diversity of Java Vir-
tual Machines. This can be exploited through the
simultaneous deployment of some request handlers
that run the IBM JVM and others that run the Ora-
cle JVM. Application-level automatic diversity is pro-
vided by code transformations that generate diverse
versions of some application components. Examples
include method body intermixing [3], randomization
of database query language [2] or our recent work
on the synthesis of sosie programs (variants that are
functionally similar but computationally diverse) [1].

“Multi-tier software diversification is
a way to break the multi-level monocul-
ture of web applications.”

The diversification of application software code is
expected to provide a diversity of failures and vul-
nerabilities in web server deployment. Thanks to
the multiplicity of request handlers running in a web
server, we can simultaneously deploy multiple com-
binations of diverse software components. Then, if
one handler is hacked or crashes, the others should
still be able to process client requests. The natural
diversity of some components, exhibits diverse failure
modes. For example there exist vulnerabilities that
are present in the Oracle JVM only (CVE-2014-4244
and CVE-2014-2490). Meanwhile, automatic diver-
sity can produce large quantities of local changes in
the code, which affect specific kinds of vulnerabili-
ties. For example method bodies merging changes
the layout of the binary code, preventing the reuse of
a single buffer overflow attack, or monkey patching;
SQL queries randomization mitigates SQL injections;
in the source code it is possible to diversify filesys-
tem paths or urls to prevent certain forms of settings
hijacking; sosies, which modify the flow of computa-
tion, can modify vulnerabilities such as lack of input
validation or business logic vulnerabilities.

Proof-of-concept: multi-tier di-

versity on a blogging system

As a proof of concept, we have diversified a prototyp-
ical web-application that uses common, off-the-shelf
components. The application is a multi-user blog-

Sidebar 2: Wordpress, a fragile monocul-

ture?

Wordpress is a Web content management system
that supports massive customization through
“plugins”. While the vibrant Wordpress commu-
nity keeps growing the number and the diver-
sity of plugins for all possible tasks, we observe
a paradoxical trend towards a monoculture of
some popular plugins. This specific plugin mono-
culture is a potential threat for the Wordpress
ecosystem, in particular when the plugins that
are widely used have a defect. As an example
of massive threat, we found that 22,6% out of a
100000 sites sample, use the Jetpack plugin that
is known to be vulnerable to attacks. Jetpack
provides users who deploy their own installation
of Wordpress with features that are available on
wordpress.com, such as advanced handling of so-
cial media or multimedia documents.
Yet, it is possible to exploit, the natural diversity
of Wordpress plugins to mitigate this threat. For
example, it is possible to replace Jetpack with
wp-symposium or disqus, which offer compati-
ble functionalities with a completely different im-
plementation. This example shows that, despite
the emergence of monocultures in the Wordpress
ecosystem, the community actively continues to
develop diverse solutions. This provides fertile
ground to experiment with the automatic diver-
sification of Wordpress sites, by exploiting the
natural diversity of functionally similar plugins,
to break this fragile application monoculture.
All results about the monoculture in Wordpress
are publicly available 2

3

RingoJS

Rhino

MDMS

JVM

R
e

d
is

 D
B

(a) The MDMS software stack

OS

Nginx load balancer

http request

Internet

config 0

Nginx load balancer

http request

Internet

config 1 config 2 config 3

config 4 config 5 config 6

(b) Monoculture deployment of MDMS

(c) Multi-diversified deployment of MDMS

config 0 config 0

config 0config 0config 0

Figure 1: The MDMS architecture: (a) the standard
MDMS software stack; (b) homogeneous deployment
of identical MDMS configurations; (c) multi-tier di-
versified deployment of different MDMS configura-
tions

ging system called MDMS 3. It allows users to view,
create, edit and delete blog posts. The MDMS web
application is implemented in JavaScript and runs on
top of the RingoJS server-side framework. RingoJS
is written in Java and complements the open-source
JavaScript engine called Rhino. The data of the
MDMS application is stored in a Redis distributed
database. This application stack is illustrated in Fig-
ure 1a. This architecture reflects the characteristics
of a large number of web applications (server side
scripting language, server-side framework, NoSQL
database).

In terms of deployment, we deploy MDMS follow-
ing a typical Reactor pattern, to allow the application
to elastically scale over time. MDMS is deployed on
request handlers, which are arranged behind a load
balancer. Following current practices, our initial de-
ployment is as follows: all handlers provide the same
RingoJS environment, running on top an identical
Java virtual machine. This usual way of deploying
the Reactor pattern results in a "non-diversified" de-
ployment of the MDMS system, illustrated in Figure
1b. This is an example of what we call an “applica-
tion monoculture”: all servers behind the load bal-
ancer are clones, from the operating system level, up
to the libraries and the application software.

Now, we inject diversity in the MDMS system at
the following levels: deployment infrastructure, vir-
tual machine, JVM and JavaScript library. Diversi-
fication at each level exploits either natural diversity
or novel techniques for automatic diversity.

OS diversification: MDMS has no dependencies to
any particular operating system and a mix of differ-
ent distributions of Linux, BSD and Windows can be
used. In our experiments, MDMS is randomly de-
ployed on Windows and Linux.

JVM diversification: The next layer is the Java vir-
tual machine. There are 3 major suppliers of Java vir-
tual machines (IBM, Oracle and OpenJDK) with sev-
eral versions for each of them. While the OpenJDK
and the Oracle JVM share the same code base, the
latter has some built-in commercial or open source
tools that are not integrated in OpenJDK. These dif-
ferences are significant enough to have vulnerabili-
ties that are present only in the Oracle one. In our
experiments, RingoJS alternatively runs on Oracle-
jdk1.7.0_45 (Sun/Oracle), IBM-Java-x86-71 (IBM),
and Java-7-openjdk (GNU).

Framework diversification: The next layer on the
stack is the RingoJS framework. This is an open-
source component for which there is no competing
functionally equivalent alternatives. To diversify this
level, we use our recent technique for the automatic
synthesis of sosie programs [1]. A sosie is a vari-

3all the code for this experiment is available at http://

diversify-project.github.io/

4

http://diversify-project.github.io/
http://diversify-project.github.io/

ant a program, which exhibits the same functionality
(passes the same test suite) and a diverse computa-
tion (different control or data flow). Sosie synthesis is
based on the transformation of the original program
through statement deletion, addition or replacement.
We synthesized 70 RingoJS sosies for MDMS using
this new diversification technique.

Deployment diversification: Using the Cloud and
its deployment interface, MDMS can be randomly de-
ployed in 2 different data centers that are geograph-
ically distant (in Europe and in the US). In our ex-
periments, we have used the Amazon cloud and a
private cloud running LXC container. We use the
CloudML (Cloud Modelling Language) platform [4]
in order to model and automatically deploy the appli-
cation among different Cloud provider and operating
systems.

In total we have: 2 versions of the operating sys-
tem; 3 diverse JVMs; 70 Rhino sosies; 2 datacenters.
Since the layers are mostly independent from each
others, those alternatives for each layer can be com-
bined together to create an exponential number of
possible server deployments. For example our setup
has the potential to run 840 different diversified web
servers for delivering the MDMS application.

Then, we deployed 17 instances of the server stack
behind a Nginx web server. In particular, we de-
ployed 17 diverse versions of the RingoJS library,
a functional component that is never diversified in
other diversification approaches. We designed 8 func-
tional test scenario for validating the global function-
ality of MDMS. We checked that these scenario ac-
tually execute the diversified part of RingoJS, i.e.,
that the modified statements in sosie programs is
executed. All scenario pass correctly on the origi-
nal, non-diversified server, as well as on the diversi-
fied server. Yet, some of the modified statements in
RingoJS (added, removed or replaced) are executed
thousands of times (max is 148000 times for a sosie in
the setLP method that is used by the JS interpreter
to handle switches). The diversified system is avail-
able for use at http://cloud.diversify-project.

eu/. This result demonstrates the ability to generate
large quantities of software diversity by combining
natural and automatic diversity in a realistic web-
based architectural setting.

Insights from application diver-

sity

This initial proof-of-concept demonstrates the feasi-
bility of multi-tier diversification in web applications.
It also illustrates the challenges to operationalize this
vision. We discuss three of them here.

Automatic diversification. This is the key ingre-

dient for a true diversity radiation. The main factor
for the 840 versions of MDMS handlers is provided by
the automatic synthesis of 70 sosies. However, there
exist few solutions for the automatic diversification
of application-level source code, because it requires
transformations that are on the edge between func-
tional correctness and quality of service [8]. The re-
cent works on unsound program transformations open
the way for such novel and massive diversification
techniques. They include the proposals of Rinard et
al. on loop perforation [7], Weimer et al.’s approach
to code transformation for automatic patching [11],
or our work on sosie synthesis [1].

Listing 1: Transformation example in one RingoJS
sosie

/∗The f o l l ow i n g sn i ppe t ∗/
case JAVA_OBJECT_TYPE:

return arg ;
default :

throw new I l l ega lArgumentExcept ion () ;

/∗ i s r ep l a ced by∗/
case JAVA_OBJECT_TYPE:

i f (arg != null)
return arg ;

default :
throw new I l l ega lArgumentExcept ion () ;

To explain the potential effects of these transfor-
mations, we look at the RingoJS sosies. All of them
exhibit a difference in the control or data flow, with
respect to the original RingoJS. Looking in more de-
tails, we observe different reasons for this diversifica-
tion. An attribute can be assigned a different value
than in the original program, yet this side effect has
no visible impact on the application; some method
calls can be removed, removing a complete part of
the program’s computation, yet the program still pro-
vides the service. Both these cases are explained ei-
ther because the changes have no side effect (e.g., the
variable is never used), or, more interestingly, because
they occur in parts of the computation that tolerate
variations, which we call plastic zones. These plastic
zones can appear in algorithms that compute some
form of heuristic or in redundant code. Plastic zones
are interesting from a security point of view because
they indicate zones in which some potentially vulner-
able code can be removed. Code replacement has a
different impact. For example, Listing 1 illustrates
a statement replacement, which ends up adding an
input validation. In general, such reduction of the
input space, if it still provides the service, is good for
security. Eventually, we need to understand how to

5

http://cloud.diversify-project.eu/
http://cloud.diversify-project.eu/

navigate the functional neighborhood of programs in
order to provide different degrees of application level
diversity while maintaining functional compatibility.

Integrating multi-tier diversification in develop-
ment processes. The second challenge of multi-tier
diversification is about its integration in web soft-
ware engineering practices, to master its impact and
leverage the full potential for dependable web appli-
cations. First, we can deploy the diverse handlers in
different ways. In our experiment we pick 17 differ-
ent handlers out of 840 and deploy them, to provide a
form of spatial diversity. Then the incoming requests
are sent to one of the handlers, round-robin. Several
other strategies are possible, for example: pick a sin-
gle handler and deploy it 17 times; constantly deploy
new versions of the handler, providing a temporal di-
versity to form a moving target defense [6]; use the
diverse handlers in a multi-version fashion, with a
voting mechanism. We now need to understand what
strategy best fits a given dependability goal. Sec-
ond, diversification has an impact on distribution and
maintenance. For example, when the binary code of
an application must be signed by a third-party, the
production of millions of diverse variants becomes a
challenge. One solution consists in diversifying the
bytecode at installation time (after the signed ver-
sion has been shipped), and have the transformation
itself recognized as legitimate (and not detected as a
malware). Another example, is dump trace analysis
or incremental updates. This will require accurate
traceability of variants and reversible code transfor-
mations, as well as new forms of code analysis for
automatic patching.

Runtime environments. Our proof-of-concept im-
plementation taught us that the integration of mul-
tiple levels of diversification poses several technical
challenges. We need a reconfigurable load balancer,
which can reason about the number of handlers it
sends a request to, detect potentially vulnerable han-
dlers and stop using them or decide to replace them;
architectures that allow the composition of multiple
levels of diversity; manage the application state con-
sistency between the diverse handlers; support dy-
namic reconfiguration and deployment of software in
a distributed infrastructure (VM, containers, soft-
ware modules). The MDMS architecture has been
designed to natively support multi-tier diversifica-
tion. The diverse request handlers store data in a
Redis database, a distributed nosql solution, instead
of a file system. We have adapted the NGinx load bal-
ancer with specific distribution and recovery policies
when one of the handlers fails. We experimented with
both Kevoree 4 and CloudML 5 to manage the deploy-
ment of software modules on diverse and distributed

4http://kevoree.org/
5http://cloudml.org/

virtual machines. Both frameworks provide utilities
to seamlessly handle the heterogeneity of technologies
for virtual machines (e.g., Vmware, VirtualBox), sys-
tem containers (e.g.,docker, lxc, jails), app contain-
ers (e.g., servlet, android, osgi). They provide flex-
ible configuration models with built-in architecture
model exploration capabilities and the ability to or-
chestrate coherent and transactional reconfiguration
of the platform, infrastructure and service levels. In
the future, we plan to experiment also with Mesos to
manage virtual machines or container deployment.

The end of monoculture?

We have emphasized the growing monoculture in web
applications, which emerges from the success of a
few frameworks and libraries. These reusable com-
ponents are essential to support the engineering of
large applications. Yet, they also come with poten-
tial drawbacks due to the massive distribution of bugs
or vulnerabilities that is associated to monoculture.
We propose to counter this phenomenon by extend-
ing software diversification beyond the machine-code
level. The way to go is to diversify the different lay-
ers, up to the functional code. We have experimented
with a realistic blog application to demonstrate the
feasibility of multi-tier diversification. This experi-
ment highlights the challenges that are ahead of soft-
ware engineers if they want to systematically break
the application monoculture of web applications. In
particular, we believe that unsound program transfor-
mations open the way for the true explosion of appli-
cation code diversity. May multi-tier diversification
be the end of multi-tier monoculture!

Acknowledgement

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreements No. 600654, DIVERSIFY project, FP7-
ICT-2011-9 and No. 611337, the HEADS project,
FP7-ICT-2013-10.

References

[1] Benoit Baudry, Simon Allier, and Martin Mon-
perrus. Tailored source code transformations
to synthesize computationally diverse program
variants. In Proceedings of the International
Symposium on Software Testing and Analysis,
2014.

[2] Stephen W. Boyd and Angelos D. Keromytis.
Sqlrand: Preventing sql injection attacks. In

6

http://kevoree.org/
http://cloudml.org/

Proceedings of the Applied Cryptography and
Network Security Conference, pages 292–302,
2004.

[3] Frederick B Cohen. Operating system protec-
tion through program evolution. Computers &
Security, 12(6):565–584, 1993.

[4] Nicolas Ferry, Alessandro Rossini, Franck Chau-
vel, Brice Morin, and Arnor Solberg. Towards
model-driven provisioning, deployment, moni-
toring, and adaptation of multi-cloud systems.
In Proceedings of the International Conference
on Cloud Computing, pages 887–894, 2013.

[5] Stephanie Forrest, Anil Somayaji, and David H
Ackley. Building diverse computer systems. In
Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 67–72, Washington,
DC, USA, 1997.

[6] Luanne Goldrich and Carl E. Landwehr. Moving
target [guest editors’ introduction]. IEEE Secu-
rity & Privacy, 12(2):14–15, 2014.

[7] Sasa Misailovic, Stelios Sidiroglou, Henry Hoff-
mann, and Martin Rinard. Quality of service
profiling. In Proceedings of the International
Conference on Software Engineering, pages 25–
34. ACM, 2010.

[8] Hamed Okhravi, Thomas Hobson, David
Bigelow, and William Streilein. Finding focus
in the blur of moving-target techniques. IEEE
Security &Privacy, 12(2):16–26, Mar 2014.

[9] David Lorge Parnas. Which is riskier: OS diver-
sity or OS monopoly? Communications of the
ACM, 50(8):112, 2007.

[10] M. Stamp. Risks of monoculture. Communica-
tions of the ACM, 47(3):120, 2004.

[11] Westley Weimer, ThanhVu Nguyen, Claire
Le Goues, and Stephanie Forrest. Automatically
finding patches using genetic programming. In
Proceedings of the International Conference on
Software Engineering, pages 364–374, 2009.

Sidebar references

[12] Sandeep Bhatkar, Daniel C. DuVarney, and
R. Sekar. Address obfuscation: an efficient ap-
proach to combat a broad range of memory error
exploits. In Proceedings of the USENIX Security
Symposium, 2003.

[13] Matthias Jacob, Mariusz H Jakubowski, Prasad
Naldurg, Chit Wei Nick Saw, and Ramarathnam

Venkatesan. The superdiversifier: Peephole in-
dividualization for software protection. In Ad-
vances in Information and Computer Security,
pages 100–120. 2008.

[14] Per Larsen, Andrei Homescu, Stefan Brunthaler,
and Michael Franz. Automated software diver-
sity. In Proceedings of IEEE Security & Privacy,
2014.

[15] Chenxi Wang, Jack Davidson, Jonathan Hill,
and John Knight. Protection of software-based
survivability mechanisms. In Proceedings of
the International Conference on Dependable Sys-
tems and Networks, pages 193–202, 2001.

[16] Daniel Williams, Wei Hu, Jack W. Davidson, Ja-
son D. Hiser, John C. Knight, and Anh Nguyen-
Tuong. Security through diversity: Leveraging
virtual machine technology. IEEE Security and
Privacy, 7(1):26–33, January 2009.

7

