
32	 IEEE Software | published by the IEEE computer society � 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

New
Perspectives
on Software
Quality
Ruth Breu, University of Innsbruck

Annie Kuntzmann-Combelles, inspearit

Michael Felderer, University of Innsbruck

FOCUS: Guest Editors’ Introduction

Today, innovation in software
quality management is driven by the
increasing role of quality within prod-
uct innovation. Customers expect a
certain level of maturity in software
products and services, a level that
turns software quality into a com-
petitive advantage. A good example
of this is e-shops, where customer-
friendly interfaces as well as high per-
formance for and correct handling
of order processes significantly con-
tribute to business success. Incidents
caused by software failures such as
a lack of availability of e-banking
services for bank customers or a sig-
nificant gap between predicted and
actual delivery time of orders due to
faulty logistics software must be dealt
with as severe business risks.

Additionally, we now face a new
generation of software systems,
ranging from cloud and mobile ser-
vices and cyberphysical systems to
M2M (machine-to-machine systems).
Emerging applications often carry
a “smart” label (smart grids, smart
medical devices, smart cities, and
so on), and they have two aspects in
common: a high potential for creat-
ing new markets or solutions to soci-
etal problems as well as the highest
requirements for quality. Resilience,
security, privacy, and safety are qual-
ity requirements that play a dominant
role in contexts where the data of in-
dividuals and critical infrastructures
are interconnected on a large scale.

A crucial implication emanating
from these kinds of developments and
a prerequisite for further consider-
ations is that we must treat software
quality management in a broader,
more integrated context than we have
in the past. Owing to the importance
of software quality in product inno-
vation, we understand the necessity
for integrating software quality man-
agement with product management.

The product owner role in Scrum is
an important step in this direction.
From the increased importance of
software quality attributes such as se-
curity and resilience, we can deduce
the necessity for integrating software
quality management with IT manage-
ment and systems operation. Secure
infrastructures, in particular, are the
result of a seamless process that inte-
grates compliance considerations at
the management level, design or pur-
chase of secure software services, and
configuration management and mon-
itoring at runtime. Additional efforts
are required for cyberphysical sys-
tems, where quality also encompasses
hardware aspects. We propose the
term “quality engineering” to stress
this end-to-end aspect of software
quality management (see Figure 1).

Grand Challenges to
Quality Engineering
Taking the view of quality engineer-
ing as our baseline, we have deduced
three major challenges for quality
management of the emerging genera-
tion of software systems.

Interconnected Services
IT systems increasingly consist of
fragmented services orchestrated in
a decentralized way. Workflows typi-
cally comprise mobile services, cloud
services, and sensor services. In such
a context, quality management is not
only required to cope with techni-
cal, multiplatform aspects but also
with questions of trust and assess-
ment of external services. Moreover,
the openness of systems makes qual-
ity management indispensable for
considering security at all levels of
abstraction.

Systems Evolution
Future IT systems will be more evo-
lutionary and more adaptive than

	 January/February 2014 | IEEE Software � 33

FOCUS: Guest Editors’ Introduction

34	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

enginering
Software

management

Product

system
s

Physical

ma

na
gem

entIT

op
er
at
io
n

Sy
st
em

s

Quality
engineering

Figure 1. A diagram of quality engineering—end-to-end software quality.

ever before. Quality management
in such a context requires an effec-
tive steering of quality management
processes, powerful version manage-
ment of all kinds of artifacts, and
comprehension of interrelationships
through effective traceability sup-
port. Automation is another crucial
factor for increased efficiency. To
meet the challenges of quality man-
agement in highly dynamic environ-
ments, we don’t only need to im-
prove automation of individual tasks
(such as testing or verification), but
we also need to improve the goal-
oriented orchestration of automated,
semiautomated, and manual quality
management activities.

Stakeholder Collaboration
Although the global software en-
gineering community has in recent
years addressed aspects such as geo-
graphically distributed teams and
outsourcing scenarios, additional
challenges have emerged through
increased collaboration of software
engineers with executive and admin-
istrative roles. Crucial prerequisites
for successful collaboration are user-
centric processes and environments

fitted to each stakeholder’s specific
tasks. This requires appropriate
concepts and methods for informa-
tion aggregation and distribution—
knowledge to complete a task must
be consistently presented within the
domain concepts of the respective
stakeholder (for example, at a busi-
ness or technical level). In addition,
it’s crucial to motivate people to col-
laborate; this concerns, for example,
support for and rewarding of docu-
mentation activities in various ways.

Future Directions
for Software Quality
Research and
Development
Based on these general consider-
ations about the future challenges
in software quality management,
we focus here on crucial areas for
future research and development
and some of the current approaches
we deem to be groundbreaking.
Because we take the end-to-end
quality engineering concept as the
baseline, the ultimate goal we are
addressing in our statement is the
management of software quality
attributes from a business-oriented

point of view and concepts, meth-
ods, and tools for the continuous
fulfilment of these quality attributes
within the productive use and devel-
opment of IT services (see Figure 2).
Crucial innovation includes

•	 knowledge management, which
comprises aggregation, distribu-
tion, visualization of data, and
information and knowledge to
support collaborating stakehold-
ers in fulfilling their quality-
related tasks and decisions;

•	 automation, which comprises
automated generation of arti-
facts and continuous efficient ex-
ecution of automated and semi-
automated tasks within software
quality management;

•	 data analysis, which comprises
the application of advanced data
analysis techniques to evaluate
current quality status, to predict
future statuses, and to steer
subsequent quality management
tasks; and

•	 collaborative processes, which
comprise goal-oriented orches-
tration of automated, semiauto-
mated, and manual quality man-
agement tasks in an environment
of stakeholders collaborating
across organizational levels and
boundaries.

Knowledge Management
The knowledge base of quality en-
gineering encompasses a wide range
of structured and unstructured in-
formation, comprising code reposi-
tories, requirements specifications,
legal regulations, test reports, tick-
ets in project management systems,
and system configurations, just to
name a few. One of the major goals
of knowledge management in this
context is to provide each stake-
holder with information to fulfill his

	 January/February 2014 | IEEE Software � 35

or her tasks in the best possible way,
to help them detect risks at an early
stage, and to let them interact prop-
erly with other stakeholders. This
gives us a clear set of requirements
for the knowledge base:

•	 Information must be of sufficient
quality—the knowledge base
should strive for properties such
as consistency and actuality.

•	 Information must be interlinked
to support stakeholder interac-
tion and data analysis.

•	 Information must be presented
within stakeholders’ domain
concepts; this requires both
information transformation (for
example, aggregation) and ap-
propriate visualizations.

•	 In contexts where stakeholders
from various organizations (and
organizational levels) interact
with each other, the knowledge
base must provide sophisticated
mechanisms to ensure confiden-
tiality and integrity.

•	 Owing to the size and complex-
ity of such a knowledge base,
advanced retrieve and search
functions are essential.

A visionary approach for knowl-
edge management addressing sev-
eral of these aspects is the concept
of view-based software engineering,
in which stakeholder-centric views
are generated from a central knowl-
edge base.1 The Open Services for
Lifecycle Collaboration community
has proposed a different, more prag-
matic direction, defining standards
and lightweight interfaces to support
tool chains in software engineering
(http://open-services.net).

Information traceability isn’t a
new topic in software quality man-
agement, although it is one of in-
creased importance in upcoming

settings. In the future, it will be-
come more important to supplement
manual maintenance of informa-
tion links by automated and semi-
automated tool support.2 This will
increase the quality and number of
links between arbitrary software en-
gineering artifacts and is the basis
for new, stakeholder-specific visual-
izations and data analysis techniques
required for managing evolving and
complex IT systems.

Requirements management is
an example of a subdiscipline with
paramount necessity for improved
knowledge management. Not only
do service-centric systems and cloud
services imply myriad requirements
and configurable features in mani-
fold versions and variants, but flex-
ible offers to customers also require
close collaboration among account
managers, requirements engineers,
test managers, and software archi-
tects. Although several approaches
address these types of challenges,3,4
we must also consider that defin-
ing requirements is a creative pro-
cess in which stakeholders and ana-
lysts work together to create ideas
expressed as system requirements.
The piloting of techniques and tools
developed to stimulate the creativ-
ity during this collaborative activ-
ity indicates that increased novelty
doesn’t necessarily come at the ex-
pense of decreased quality and use-
fulness of the requirements.5

Data consistency and actuality
are important yet nebulous goals
because a knowledge base for qual-
ity engineering encompasses a wide
range of information from mani-
fold sources, both in structured
and unstructured form. Therefore,
we don’t only need formal but also
semiformal techniques. For example,
well-orchestrated manual, semiau-
tomated, and automated tasks help

keep enterprise architecture models
in sync with the actual IT infrastruc-
ture.6 As another example, consider
that early detection of conflicts be-
tween security and safety require-
ments addresses challenges to certifi-
cation of cyberphysical systems.

Automation
A cornerstone of the continuous
quality management of evolution-
ary and adaptive IT systems is auto-
mation. Generative techniques pro-
ducing executable artifacts (such as
system code and tests) have attained
an attractive level of productivity in
recent years. Models play a major
role within automation because they
can help represent systems at differ-
ent levels of abstraction. In this way,
models enable business-oriented sys-
tems representation, the manage-
ment of varying service technologies,
or specification across system and
platform boundaries at a uniform
level of abstraction.

Modern modeling workbenches
provide flexible support for domain-
specific languages. On the basis of
metamodel definitions, they accom-
modate powerful model engineer-
ing support ranging from editors
and model transformation to code

Quality
engineering
innovation
�elds

Knowledge
management

Data
analysis

Automation

Collaborative
processes

Figure 2. Quality engineering

innovation fields.

FOCUS: Guest Editors’ Introduction

36	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

generation. XText (www.eclipse.org/
Xtext) and MPS (www.jetbrains.
com/mps) are examples of such ge-
neric modeling workbenches sup-
porting textual domain-specific
modeling languages. Others have
demonstrated the potential and prac-
tical relevance of a modeling work-
bench instantiation for the embed-
ded software domain, supporting
model-based abstractions on C code,
automated testing, requirements
tracing, and formal program verifi-
cation.7 Another example is Txture
(http://txture.org), which integrates
use of textual modeling and graphi-
cal visualizations in the IT architec-
ture documentation domain.

Model-based testing approaches
automate the generation of test in-
puts, drivers, stubs, and oracles on
the basis of models of a system or its
environment. The benefits of model-
based testing include early and ex-
plicit specification and verification
of system behavior, transparent test
design and documentation, scal-
able and effective test automation,
and support for managing changes.
Therefore, when regression testing is

performed to provide confidence that
changes don’t harm existing behav-
ior, the benefits of model-based test-
ing will usually far outweigh its costs
of model creation and maintenance.
Recently, search-based techniques
such as evolutionary and genetic al-
gorithms8 have been especially suc-
cessful in generating test artifacts.9

Automation beyond executable

artifacts—supporting artifact trace-
ability, requirements management,
or data analysis—still has a huge po-
tential that is waiting to be unlocked.

Data Analysis
Continuous build and deployment
processes, ticket-based project man-
agement tools, and automated test
environments are valuable data
sources for advanced data analysis
techniques. Data analysis can pro-
vide us powerful support for deci-
sion making by helping us evaluate
the current quality status, predict fu-
ture statuses, and recommend subse-
quent quality management tasks.

Manifold metrics have been de-
fined to evaluate a system’s quality
status. In practice, it’s neither pos-
sible nor meaningful to character-
ize software products or projects by
a single quality metric. Therefore,
software dashboards, which inte-
grate advanced metrics that are often
visualized as graphs, optimally sup-
port decision making. In addition,
software dashboards contribute to
increased transparency in the soft-
ware development process as well as

additional team awareness. So it’s es-
pecially important to provide stake-
holder-specific visualizations and
search functions to optimally sup-
port, for example, project managers,
product managers, software archi-
tects, or testers so they can perform
their tasks well.

Risk-based testing, which uses
risk information to optimize all

phases of the test process, has a high
practical relevance as far as cop-
ing with limited testing resources is
concerned. A core activity in every
risk-based testing process is risk as-
sessment. In current practice, risk as-
sessment is mainly performed manu-
ally and in an ad hoc manner. This
makes risk assessment and therefore
the overall risk-based testing pro-
cess expensive, time-consuming, and
nondeterministic regarding human
decisions. There is still big potential
to develop a more methodical and
scalable approach by integrating au-
tomatically determined metrics into
the risk assessment process.10

To predict future quality status
of software, various bug prediction
models have also been proposed.
The most important benchmarked
and compared bug prediction cat-
egories are process metrics, previous
defects, source code metrics, entropy
of changes, and churn and entropy
of source code metrics.11 Manual
data validation for obtaining useful
prediction results is one recommen-
dation for misclassification on bug
prediction.12 Another promising ap-
plication area of bug prediction is
the use of predictions in the context
of risk assessment.

With the increased availability of
a huge amount of static and dynamic
data from software engineering and
IT management processes, new op-
portunities for improved decision
support based on powerful predic-
tion techniques and user-centric vi-
sualizations are likely to arise.

Collaborative Processes
It’s quite clear that the new kinds
of fragmented, adaptive, interact-
ing systems of services pose formi-
dable challenges to the overall qual-
ity engineering process. First, the
future quality engineering process

It’s neither possible nor meaningful to
characterize software products or projects

by a single quality metric.

	 January/February 2014 | IEEE Software � 37

Continuous delivery is mandatory
for business agility.

encompasses new interfaces, stake-
holders, and quality management
tasks, all of which must be orches-
trated. Among these are the increased
importance of quality management
of nonfunctional requirements such
as security and performance, the
integration of hardware- and soft-
ware-related quality management,
and quality management of external
(cloud) services. There’s a proposal
for a general approach for quality
management of cyberphysical sys-
tems integrating manifold hardware
and software models available,13 as
well as a thorough discussion about
the new role of testing in the era of
the cloud.14

Other challenges arise from the
need to integrate strictly structured
processes in IT management and ag-
ile processes within software engi-
neering. A change of paradigm from
project-centric processes to more
general change-driven processes for
quality engineering integrating man-
ual and automated tasks has been
proposed.15 We are still in need of a
foundational approach for steering
processes by results of data analy
tics (for example, predicting quality
attributes or recommending quality
related activities such as testing).

Although we as guest editors are
coming from the modeling com-
munity, we have not ranked model-
based approaches as a future focal
area in this issue per se. Rather, we
deem model engineering as a core
enabler to achieve goals such as au-
tomation, stakeholder-centric views,
and prediction. However, we also see
the necessity to depart from “raw”
model-based approaches and focus
on quality goals instead. On the one
hand, this means, for instance, that
model engineering (model transfor-
mation, versioning, and the like) is
performed in the background while

stakeholders are provided with envi-
ronments best adapted to their tasks.
On the other hand, the end-to-end
quality engineering approach requires
integration techniques that work on
structured (model-based) and un-
structured data, for instance, to im-
prove data retrieval and data analysis.

In This Issue
This special issue, owing to its fun-
damental software quality focus,
comprises a collection of diverse ar-
ticles. They address the challenges
and directions for software quality
research as we have discussed in this
introduction.

In “On the Accuracy of Auto-
mated GUI Testing for Embedded
Systems,” Ying-Dar Lin, Edward
T.-H. Chu, Shang-Che Yu, and
Yuan-Cheng Lai introduce a method
for bypassing the uncertainty of run-
time execution environments to guar-
antee that GUI operations are repro-
duced at the device under test. Smart
phones are used as devices under test
in the article, and the experimental
results achieved for an Android plat-
form are very encouraging. Their ap-
proach is therefore a step forward in
automating test activities for inter-
connected services.

In “Data Protection in Health-
care Social Networks,” Jingquan Li
discusses healthcare social network-
ing sites—websites that provide us-
ers with tools and services to eas-
ily establish contact with each other
around shared problems and to
utilize the “wisdom of crowds” to

attack diseases. The article presents
two case studies showing that these
networks must be secure and avoid
unauthorized use of disclosure of pa-
tient data to implement collaborative
processes and to adequately share
knowledge to support collaborating
stakeholders.

In “Economic Governance of
Software Delivery,” Murray Can-
tor and Walker Royce tackle the
dynamic agile transition observed
in many organizations. Fast-evolv-
ing, competitive systems and envi-
ronments force companies, large to
small, to consider an in-depth trans-
formation of both mindsets and ac-
tivities to stay alive. Continuous
delivery is mandatory for business
agility. Measurement to steer evo-
lution and support continuous im-
provement must be revisited. This
article offers an interesting new data
analytics approach based on Bayes-
ian reasoning to improve predict-
ability for economic governance.

Luís da Silva Azevedo, David
Parker, Martin Walker, Yiannis Pa-
padopoulos, and Rui Esteves Araú-
jo’s article “Assisted Assignment of
Automotive Safety Requirements”
and its consequences are essential
for evolution and knowledge man-
agement in the automotive industry.
Owing to the high number of LOC
and developments such as driverless
vehicles, safety requirements become
more and more important, as well as
more difficult to manage. Because
Automotive Safety Integrity Levels

FOCUS: Guest Editors’ Introduction

38	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

(ASILs) are difficult to perform man-
ually, the authors present a new
technique that automates the alloca-
tion and decomposition of ASILs to
support the system and software en-
gineering life cycle as well as system
evolution and knowledge manage-
ment in this context.

In “Decision-Centric Architecture
Reviews,” Uwe van Heesch, Veli-
Pekka Eloranta, Paris Avgeriou, Kai
Koskimies, and Neil Harrison fo-
cus on assessing system architecture
quality, which is important to foster
stakeholders’ expectations, especially
for interconnected services where ar-
chitecture plays a key role. Their pre-
sented approach to architecture eval-
uation uses architecture decisions
as first-class entities. The approach
uncovers and evaluates the rationale
behind the most important architec-
ture decisions, considering the entire
context, in which the decisions were

made. It fosters stakeholder collabo-
ration, supports knowledge manage-
ment, and provides valuable input for
data analysis.

T ogether, the articles col-
lected in this special issue
on software quality contrib-

ute to all the innovation areas we’ve
mentioned and point us in the direc-
tion of solving the grand challenges
of quality engineering.

References
	 1.	 C. Atkinson, “Orthographic Software

Modelling: A Novel Approach to View-
Based Software Engineering,” Modelling
Foundations and Applications, LNCS
6138, Springer, 2010, p. 1.

	 2.	 J. Cleland-Huang, O. Gotel, and A. Zis-
man, Software and Systems Traceability,
Springer, 2012.

	 3.	 K. Pohl, G. Böckle, and F. van der Linden,
“Software Product Line Engineering:
Foundations, Principles and Techniques,”
Springer, 2005.

	 4.	 S. Lohmann et al., “Semantifying Re-
quirements Engineering—the Softwiki
Approach,” Proc. 4th Int’l Conf. Semantic
Technologies (I-SEMANTICS 08), J. UCS
series, 2008, pp. 182–185.

	 5.	 K. Zachos and N. Maiden, “Inventing
Requirements from Software: An Empiri-
cal Investigation with Web Services,” Proc.
16th IEEE Int’l Requirements Engineering
Conf., IEEE, 2008, pp. 145–154.

	 6.	 M. Farwick et al., “Automation Processes
for Enterprise Architecture Management,”
Proc. 15th IEEE Int’l Enterprise Distrib-
uted Object Computing Conf. Workshops
(EDOCW 11), IEEE, 2011, pp. 340–349.

	 7.	 M. Voelter et al., “mbeddr: Instantiating
a Language Workbench in the Embedded
Software Domain,” Automated Software
Eng., vol. 20, no. 3, 2012, pp 339–390.

	 8.	 M. Harman, S.A. Mansouri, and Y.
Zhang, “Search-Based Software Engineer-
ing: Trends, Techniques and Applications,”
ACM Computing Surveys, vol. 45, no. 1,
2012, article 11.

	 9.	 R. Matinnejad et al., “Automated
Model-in-the-Loop Testing of Continuous
Controllers Using Search,” Search Based
Software Engineering, vol. 8084, Springer,
2013, pp. 141–157.

	10.	 M. Felderer et al., “Integrating Manual
and Automatic Risk Assessment for Risk-
Based Testing,” Software Quality: Process
Automation in Software Development,
Springer, 2013, pp. 159–180.

	11.	 M. D’Ambros, M. Lanza, and R. Robbes,
“Evaluating Defect Prediction Approaches:
A Benchmark and An Extensive Compari-
son,” Empirical Software Eng., vol. 17,
nos. 4–5, Springer, 2012, pp. 531–577.

	12.	 K. Herzig, S. Just, and A. Zeller, “It’s Not
a Bug, It’s a Feature: How Misclassifica-
tion Impacts Bug Prediction,” Proc. Int’l
Conf. Software Eng., IEEE, 2013, pp.
392–401.

	13.	 J. Sztipanovits, “Cyber Physical Systems—
Convergence of Physical and Information
Sciences,” it-Information Technology
Methoden und innovative Anwendungen
der Informatik und Informationstechnik,
vol. 54, no. 6, 2012, pp. 257–265.

	14.	 H.M. Sneed, “Testing Web Services in
the Cloud,” Software Quality: Increasing
Value in Software and Systems Develop-
ment, Springer, 2013, pp. 70–88.

	15.	 R. Breu et al., “Living Models-Ten
Principles for Change-Driven Software
Engineering,” Int’l J. Software and Infor-
matics; doi:10.1109/CISIS.2010.73.

Ruth Breu is a full professor at the University of Innsbruck.
Her research interests include software engineering, informa-
tion security, enterprise architecture management, require-
ments engineering, and model engineering. Breu received a
habilitation (postdoctoral qualification) in computer science from
Technische Universität München. Contact her at ruth.breu@
uibk.ac.at.

Annie Kuntzmann-Combelles is a founder and CEO at
inspearit. Her research interests include agile and lean manage-
ment, process management, and metrics. Kuntzmann-Com-
belles received an MS in aerospace engineering from Sup’Aéro.
She’s an associate editor of IEEE Software. Contact her at annie.
combelles@inspearit.com.

Michael Felderer is a research associate within the
Quality Engineering research group at the Institute of Computer
Science at the University of Innsbruck. His research inter-
ests include software quality in general, software testing,
requirements engineering, and empirical software engineering.
Felderer received a PhD in computer science from the University
of Innsbruck. Contact him at michael.felderer@uibk.ac.at.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

