
32 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

FOCUS: GUEST EDITORS’ INTRODUCTION

The Re� ective
Software
Engineer:
Re� ective Practice

Tore Dybå, SINTEF

Neil Maiden, City University London

Robert Glass, Computing Trends

“Life can only be understood backwards; but it

must be lived forwards.” —Søren Kierkegaard

THE CAPACITY TO refl ect on past
practice is important for continu-
ous learning in software develop-
ment. Refl ection often takes place
in cycles of experience followed by
conscious application of learning
from that experience, during which
a software developer might explore
comparisons, ponder alternatives,
take diverse perspectives, and draw
inferences, especially in new and/or
complex situations. Such refl ective
practice has been shown in different
disciplines to be an effective devel-
opmental practice for organizations,
for teams, and for individuals.

For example, a refl ective agile de-
veloper who, after collaborating with
client end users to implement a new
software feature, might choose to re-
fl ect on the effectiveness of the pro-
cess of co-designing wireframes, the
choice of selected software libraries
with which to prototype the feature,
and the value of the daily scrum to
manage project progress. He or she
might consider alternatives and then
infer what could be done more ef-
fectively next time. Information
that could be provided to the devel-
oper to enable this refl ection might
include the number of user changes
to the wireframe design, time taken
to implement the software, and con-
crete outcomes of daily scrums. The
developer uses this information to
encourage sensemaking, critiquing,
and the identifi cation of new forms
of development work.

However, such refl ection in prac-
tice happens all too infrequently in
software development. Not only do
software developers lack the tools
to capture, analyze, and present in-
formation upon which to refl ect,
but most software projects don’t ac-
tively support refl ection, or budget
or schedule for it. Tom DeMarco,1

for example, challenged downsizing,

s4gei.indd 32 5/28/14 4:18 PM

JULY/AUGUST 2014 | IEEE SOFTWARE 33

restructuring, and cost cutting in
software management in the name
of effi ciency and global competition.
The resulting costs in our human
capital—stress, pressure, and over-
commitment—are self-defeating and
often remove the incentives and re-
sources needed for effective refl ective
learning.

Indeed, our agile developer’s de-
sirable refl ective practice offers an
alternative approach to learning a
body of knowledge that has to be
acquired by novices, which can then
be applied to solve predefi ned prob-
lems in practice. (We refer here to a
generic body of knowledge: assumed
knowledge about a business, about
how technology works, about good
work practices, all of which need to
be refl ected on and learned from.)
A refl ective practitioner more often
questions how to think and act, ei-
ther after having acted (refl ection
on action) or in the midst of act-
ing (refl ection in action). The latter
makes it possible to alter your cur-
rent course of action by framing the
problem in a new way or by impro-
vising new ways of solving the prob-
lem at hand.

Therefore, the social and cultural
context in which refl ection takes
place has a powerful infl uence over
what kinds of refl ection it is possible
to foster and the ways in which this
might be done.

Refl ective Practice
The concept of refl ective practice
centers on the idea of lifelong learn-
ing. Fundamental to such refl ective
practice is the integration of theory
and practice: the cyclic pattern of
experience and the conscious appli-
cation of the learning outcomes of
that experience.

For the past 30 years, the lit-
erature has grown to focus on

experiential learning and the devel-
opment and application of refl ective
practice. An important insight from
this literature is that the most pow-
erful learning comes from direct ex-
perience. Among the most infl uential
theorists who have explored the cen-
tral role that such experience plays in
the learning process are John Dewey,
Kurt Lewin, and Jean Piaget. They
inspired the work of later theorists
such as Gregory Bateson, David Kolb,
David Boud, and Donald Schön.

Kolb’s model of experiential
learning summarizes the ideas of
these theorists and explains the pro-
cess of refl ection at the individual
level as a cycle consisting of four
stages (see Figure 1).2 The cycle be-
gins with actual or concrete experi-
ence that deals with immediate hu-
man situations in a personal way.
Next is the individual’s ability to
refl ect on and observe experiences
from many perspectives and develop
these observations into collections of
related ideas in a process that Kolb
called re� ective observation. The
third stage in the learning cycle is
making sense of our experiences,
which involves constructing mod-
els to defi ne and explain or predict
what we observe; Kolb called this
abstract conceptualization. In the fi -
nal stage, we seek to test our ideas in
new situations through active exper-
imentation (trying something new).
The outcome of such an experiment

becomes concrete experience and
thus a spiraling cycle of experiential
learning becomes apparent.

Direct experience is also con-
nected to processes of sensemaking:
the combination of a past moment,
a connection, and a present moment
of experience is what creates a mean-
ingful defi nition of the present situa-
tion. Thus, experiential learning has
in common with sensemaking that it
requires three things: two elements
and a relation.

There has been a similar devel-
opment and focus on learning and
refl ection at the group and orga-
nizational level. Victor Basili and
Gianluigi Caldiera, for example, pro-
vided a quality improvement para-
digm for the software industry that
focuses on reused learning and expe-
rience by establishing so-called ex-
perience factories.3 These experience
factories support experience reuse
and collective learning by develop-
ing, updating, and providing, on re-
quest, clusters of competencies to be
used by the organization’s projects.

The fundamental role of manag-
ers and leaders is to shape and cre-
ate organizational contexts that are
supportive of and conducive to re-
fl ection and organizational learn-
ing. To the extent that the software
organization remains locked into the
old context, no signifi cant change or
improvement is possible. This means
that managers have to become

Concrete experience

Abstract conceptualization

Active experimentation Re�ective observation

FIGURE 1. Experiential learning cycle.

s4gei.indd 33 5/28/14 4:18 PM

34	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

skilled in enabling the learning pro-
cesses and in defining new and ap-
propriate contexts for reflection.

The manager can create such
contexts by enabling a belief-driven
process that generates new under-
standings of a situation or by en-
gaging in new actions through an

action-driven process. The conven-
tional way of thinking about soft-
ware process improvement puts
these in a sequential order—first
understanding, then action. For ex-
ample, in the early Japanese soft-
ware factories, a strong emphasis
was put on gathering data on ex-
isting processes before changing or
improving them. From a learning
perspective, however, actions and
understandings often need to be re-
versed. Therefore, the generation of
new understandings and new ac-
tions, in whatever order they evolve,
are fundamental in creating the con-
texts that enable reflective practice.

Occasions of Reflection
Whether software development takes
place within projects or as part of a
continuous product development and
improvement process, it’s convenient
to discuss occasions of reflection in
terms of three stages4,5: activities and
experiences before the event, during
the event, and after the event.

Reflection before Events
The emphasis here is on what we can
do to make the most of future events.
Although we can never predict fully

what will occur, it’s useful to reflect
on what we bring to the event, what
we want out of it, and what we need
to be mindful of that could distract
us from our intentions. It’s also use-
ful to reflect on what we need to
know to make the event a productive
one and on what ideas other people

might have about what will happen.
Furthermore, it might be useful to re-
flect on what to do if the assumptions
about the event are wrong and what
to fall back on to cope effectively.

A simple way of reflecting at the
group level is to arrange a learning
meeting or a reflection workshop
when initiating a new project—
participants in earlier projects are
invited to share their experience,
insight, and knowledge with the
members of the new project.5

The purpose of such a reflection
meeting before a project starts is to
learn from others in order to con-
tribute to the project, not to provide
criticism of the project planning. The
idea isn’t to summon global experts
or top management. It’s all about
finding people who “have done this
before” and who come to share their
insights with the new project team.
Both parties learn—the external
peers acquire a broader knowledge
base, while the new project team will
be able to exploit earlier experiences.

Reflection during Events
The core of the reflective practice
is learning while doing. It is such
reflection-in-action that lies at the

heart of Schön’s view of experiential
learning.6 Continuously changing
environments and conditions often
asks for adjustments, for example, to
established processes and standards,
and learning along the way implies
the need for a large amount of cre-
ativity7 and improvisation.8

At the individual level, it’s our en-
gagement with an event through no-
ticing, intervening, and reflecting in
the midst of action that constitutes
a learning experience.9 We learn by
becoming aware of what’s happen-
ing in and around us and by tak-
ing actions to change the situation
in which we find ourselves. Schön’s
concept of reflection in action refers
to such situations when we’re able
to consciously evaluate and make
changes on the spot during an event.

At the group level, we can often
schedule time for reflection in the
form of short learning meetings im-
mediately after an activity or an oc-
currence. Such meetings make it pos-
sible for us to learn from positive
and negative experiences while we
still are able to do something about
them.5 The point is that the continu-
ous learning meetings are short and
focused. Scrum’s 15-minute daily
meeting10 in Scrum or the more com-
prehensive agile retrospectives after it-
erations or releases11 are examples of
such occasions for reflection in action.

Asking simple questions—What
was supposed to happen? What ac-
tually happened? Why were there
differences? What can we learn
from this?—is often useful for learn-
ing meetings in the midst of action.
These questions can trigger adjust-
ments and improvised changes as
the basis for continuous improve-
ment on all levels, spanning from a
simple activity or process to itera-
tions and even to the project or com-
pany as a whole.

The concept of reflective practice centers
on the idea of lifelong learning.

s4gei.indd 34 5/28/14 4:18 PM

	 JULY/AUGUST 2014 | IEEE SOFTWARE � 35

Reflection after Events
Important occasions of reflection oc-
cur once the immediate pressure of
acting in real time has passed. Some
learning inevitably takes time and
requires the ability to view particu-
lar events in a wider perspective.

The basis of all learning at the
individual level is the lived experi-
ence of the learner. Often, too little
emphasis is placed on what has hap-
pened and how it was experienced
at the time. Mentally revisiting posi-
tive and negative incidents can be an
important step in the process of re-
evaluating the experience. This pro-
cess of reevaluation includes relating
new information to that which is al-
ready known, seeking relationships
between new and old ideas, deter-
mining the authenticity for ourselves
of the ideas and feelings that have
resulted, and making the resulting
knowledge our own—that is, a part
of our normal ways of operating.4

At the group level, we reflect on
our collective experiences when
the project, or a larger part of, is
finished in order to get a better
understanding of what happened. A
simple way of collectively reflecting
on such experience after events
is to arrange a learning meeting.
Project postmortems and sprint,
release, and project retrospectives
are examples of such moments of
reflection after events.12

Arranging such learning meetings
is a quick and effective way of
collecting knowledge and experience
before the project is dissolved and an
important part of any improvement
strategy. Retrospectives can also
be used for immediate transfer
of knowledge to a new project
that’s about to start. This way,
retrospectives also make sure that
future teams can use the knowledge
and experience that a recently

finished project has acquired. These
experiences can take the form of new
or updated models and processes, or
as other forms of knowledge made
available for future projects.

A project retrospective or post
mortem is more thorough than the
learning meetings in the midst of
action. They typically last from a
couple of hours to a whole day. The
project retrospective is also different
by focusing on collecting experience
and knowledge for future projects—
not only on learning in action, inside a
running project. The main motivation
is to reflect on what happened in the
project to improve future practice,
for the individuals who participated
in the project as well as for the
organization as a whole.

In This Issue
We received 26 submissions to this
special issue from all over the world.
Based on the feedback of our expert
reviewers, we eventually selected

four articles that we thought could
best address reflective software
practice with its many facets. As
well as recognizing a belief in the
importance of reflective software
practices, all the articles also agree
on something else—that reflection in
the hectic life of software practice is
difficult to achieve.

In the face of that fact, each
article describes an approach that
the authors have evaluated in some
practical way. Two of them describe
an analysis of the results of using

the approach they advocate in an
at least somewhat practical setting.
Another describes the use of its
recommended technique via case
studies of actual usage in industrial
settings. And the fourth describes
an experiment in the use of what
they advocate. In other words, these
articles aren’t just about the theory
of reflective practice; they’re about
its implementation.

The first article, “Reflecting
on Evidence-Based Timelines” by
Elizabeth Bjarnason, Anne Hess,
Richard Berntsson Svensson, Björn
Regnell, and Joerg Doerr, proposes
the use of a project-based timeline
to focus reflection on certain aspects
of a project. This, of course, requires
some preparation for the reflection
itself because a project timeline must
be prepared, and key events along
the timeline recorded.

The second article, “Supporting
Reflective Practice in Software
Engineering Education Through

a Studio-Based Approach,” by
Christopher N. Bull and Jon Whittle,
takes a rather different view of how to
achieve reflection. It suggests that one
reason why reflection in practice is
lacking is that education in reflection,
a necessary prelude, is also lacking, so
it proposes a way to “teach reflective
techniques from the start.” Toward
that end, it proposes what the authors
call a “studio-based approach,”
and describes in detail how such an
approach could be implemented in an
educational setting.

The core of the reflective practice
is learning while doing.

s4gei.indd 35 5/28/14 4:18 PM

36 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

The third article, “Embedding
Refl ection and Learning into Agile
Software Development,” by Jeffry
Babb, Rashina Hoda, and Jacob
Nørbjerg, notes that the agile
philosophy calls for refl ection as
part of its software construction
process, but, like the other articles,
the authors observe that even on
agile projects, this seldom occurs.
The article presents a “refl ective agile
learning model,” showing where and
how to integrate refl ective practices
and learning into agile software
development. The article relies
on evidence from studies of agile
practices in a small software company
in the US, and on a Grounded Theory
study of 23 different companies
in New Zealand and India. Based
on those fi ndings, it recommends
approaches that can be used in agile
practice to achieve the refl ection that
the agile practices recommend.

The last article, “Coderetreats:
Refl ective Practice and the Game of
Life” by David Parsons, Anuradha
Mathrani, Teo Susnjak, and Arno
Leist, describes an experiment in an
academic setting to explore a very
specifi c way of achieving refl ection.
It borrows ideas from “The Game
of Life,” in which participants focus
intensely on a narrowly described
part of a program but from the
point of view of refl ection on the
fundamentals of simple modular
design. In the experiment, the
authors gathered a range of data to
assess the relevance and effectiveness
of what they proposed.

I n The Re� ective Practitioner,
Donald Schön emphasized a
need for consistent systems for

ongoing learning at both the indi-
vidual and the organizational level.6

Correspondingly, our aim with this
special issue is to present examples
of methods, tools, and experiences
that support such individual and
group refl ection. We hope this is-
sue provides you with some ideas
for how you can create a context for
the sharing of knowledge and expe-
rience at a personal level as well as
at the team and project levels in your
organizations, and that it stimulates
rich discussions on how to learn
from and improve practice.

References
 1. T. DeMarco, Slack: Getting Past Burnout,

Busywork, and the Myth of Total Ef-
� ciency, First Broadway, 2001.

 2. D.A. Kolb, Experiential Learning:
Experience as the Source of Learning and
Development, Prentice Hall, 1984.

 3. V.R. Basili and G. Caldiera, “Improve
Software Quality by Reusing Knowledge
and Experience,” Sloan Management Rev.,
vol. 37, no. 1, 1995, pp. 55–64.

 4. D. Boud, “Using Journal Writing to En-
hance Refl ective Practice,” New Directions
for Adult and Continuing Education, vol.
90, no. 3, 2001, pp. 9–17.

 5. T. Dybå, T. Dingsøyr, and N.B. Moe,
Process Improvement in Practice: A
Handbook for IT Companies, Kluwer
Academic, 2004.

 6. D.A. Schön, The Re� ective Practitioner:
How Professionals Think in Action, Basic
Books, 1983.

 7. R.L. Glass, Software Creativity 2.0, devel-
oper.* Books, 2006.

 8. T. Dybå, “Improvisation in Small Software
Organizations,” IEEE Software, vol. 17,
no. 5, 2000, pp. 82–87.

 9. D. Boud, R. Keogh, and D. Walker, eds.,
Re� ection: Turning Experience into
Learning, Kogan Page, 1985.

 10. K. Schwaber, Agile Project Management
with Scrum, Microsoft Press, 2009.

 11. E. Derby and D. Larsen, Agile Retro-
spectives: Making Good Teams Great,
Pragmatic Bookshelf, 2006.

 12. T. Dingsøyr, “Postmortem Reviews:
Purpose and Approaches in Software
Engineering,” Information and Software
Technology, vol. 47, 2005, pp. 293–303.

TORE DYBÅ is chief scientist at SINTEF, Norway. His research
interests include agile software development, evidence-based
software engineering, and management of large-scale software
projects. Dybå received a Dr. Ing. in computer and information
science from the Norwegian University of Science and Technol-
ogy. Contact him at tored@sintef.no.

NEIL MAIDEN is a professor of systems engineering at City
University London. His research interests include requirements
engineering, computer-based creativity support, and technolo-
gies to support people living with dementia. Maiden received a
PhD in computer science from City University London. Contact
him at N.A.M.Maiden@city.ac.uk.

ROBERT GLASS is president of Computing Trends, Australia.
His research interests include software engineering in practice,
software quality, and software maintenance. Glass received an
honorary PhD from Linkoping University, Sweden. Contact him
at rlglass@acm.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s4gei.indd 36 5/28/14 4:18 PM

