
0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E SEPTEMBER/OCTOBER 2015 | IEEE SOFTWARE 93

Editor: Robert Blumen
SalesForce Desk.com
robert@robertblumen.com

SOFTWARE
ENGINEERING

Software Architecture
for Developers
Sven Johann

SOFTWARE
ENGINEERING

IN EPISODE 228 of Software Engineer-
ing Radio, our new host Sven Johann
talks with independent consultant Simon
Brown, creator of the C4 software archi-
tecture model and author of Software
Architecture for Developers. Brown ad-
vocates doing “just enough” design up
front and capturing the design through a
series of simple, effective diagrams.

Other topics covered in the inter-
view—but omitted from this column
because of space—include why the code
never matches the diagrams and why
frameworks are guilty of this, what you
can do to let the code scream the archi-
tecture at you, and how to create simple
documentation that’s easy to maintain
and browse. You can download the en-
tire episode at www.se-radio.net.

 —Robert Blumen

Sven Johann (SJ): You’re proposing
sketching as an effective way to create
and communicate software architecture.
Why is communicating software archi-
tecture important?

Simon Brown (SB): If you look back
10 or 20 years, we used to have a very
process- heavy, document-heavy way of
doing design. This is the “go capture all
of the requirements, do all of the design,
and then document that design in a big,
chunky, hefty document” [approach].
Then UML came along and everybody
was buying the UML tools and model-
ing tools, and we were spending months
and months just doing design. Fast for-
ward to 12 years ago, and the whole ag-

ile thing came along. I think we’ve gone
from one extreme to the other, where a
lot of teams are basically doing nothing.
What I’m trying to do is push the needle
somewhere back toward the middle.

SJ: We had big design up front, then no
design up front. Now you’re trying to get
“just enough” design up front.

SB: Of course, agile doesn’t say “don’t
do design.” That’s many people’s inter-
pretation of the Agile Manifesto and the
agile approach, but that’s not actually
the case. I’m trying to get people think-
ing about design again and to provide a
nice lightweight mechanism that people
can use to share things like this. After
all, you have this fantastic idea for how
to build a software system, and the team
needs to understand it. That’s the whole
purpose of sketching.

Software developers are the biggest
stakeholders of software architecture,
so that’s the primary audience for these
sketches. It’s really about being able to
communicate and share the vision we
create of the design or architecture of
the thing we want to build. Sketching
implies a certain degree of [being light-
weight]. What I’m trying to avoid is go-
ing into this big model-driven, up-front
design process where we have to think
through a lot of things. This is about get-
ting the majority of ideas done quickly
in a way that’s accessible to developers.

SJ: So it’s okay to leave stuff out? It’s
better to be incomplete but lightweight?

SOFTWARE ENGINEERING

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

SB: Right. We’re de� nitely looking
for some preciseness here, especially
around some of the high levels of ab-
straction, but what we don’t want
to do is drop down to class-level
details. If people are sketching out
class diagrams, maybe we have to
question why.

SJ: Sketches aren’t formalized, so there
are probably many ways I can create a
sketch, especially ineffective ones.

SB: Part of the work that I do is I
get people to design a solution. I
have them draw some pictures with-
out much guidance at all. Prob-
ably upward of 90 percent of those
sketches are ineffective for a number
of reasons. On the notational side
of things, people don’t tend to use
UML. If people are not using UML,
they are essentially inventing their

own abstractions and notations,
which causes a lot of confusion. We
� nd a lot of sketches with mixed
abstractions, mixed levels of detail.
When people have drawn multiple
sketches to show different views of
the architecture, it’s not clear what
the relationship is between those dif-
ferent sketches.

SJ: You mentioned UML—is it dead?

SB: One of the questions I regu-
larly ask my audiences at talks and
workshops is how many people
use UML, and it’s about one in 10
people. I’ve recently had a bunch
of audiences where it’s been zero
people. I use a very small number
of UML diagrams for very speci� c
reasons: class diagrams for showing
classes and how they interact, ac-
tivity diagrams to show Web � ows,

statecharts for states, and sequence
and collaboration diagrams to show
interactions between things. But
that’s pretty much it. I don’t use
UML for architecture diagrams,
and I don’t see many people using
UML tools anymore.

SJ: Let’s move on to the C4 model.
What is Ben Shneiderman’s mantra?

SB: His mantra is basically a way
to deal with a lot of data. Essen-
tially, if you have a huge amount of
stuff to deal with, what you want
to do � rst is to get an overview.
Then you want to zoom and � lter,
so you’re dropping down into a
subset of the dataset. Then, if you
want more information you can get
that on demand. The C4 model is a
way of very simply describing the
software system. In order to under-
stand the C4 model, you need to
backtrack slightly and say, “How
do you represent and think about a
software system?”

A software system is made up
of a number of containers. These
are basically deployable or execut-
able units, something you can host
code or data in. Those containers
contain components. Because I deal
with Java and .NET, my compo-
nents are made of classes. Once you
understand that simple tree struc-
ture—system, containers, compo-
nents, classes—you can then draw a
diagram at each level. The four Cs in
C4 are context, containers, compo-
nents, and classes.

SJ: When I hear “container” these
days, I always think about Docker.
Is your de� nition of a container the
same as Docker’s?

SB: The simple answer is possibly.
Let’s imagine you are building a

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

Recent Episodes
• 232—Internet Engineering Task Force chair Mark Nottingham joins

Stefan Tilkov to look back at HTTP’s history and explain the protocol’s
upcoming revision.

• 231—Joshua Suereth and Matthew Farwell discuss SBT (Simple Build
Tool) and their new book SBT in Action with host Tobias Kaatz.

• 230—Host Jeff Meyerson interviews Shubhra Kar of StrongLoop about
server-side programming in JavaScript and how Node.js is changing the
game.

Upcoming Episodes
• Author Barry O’Reilly tells host Johannes Thönes what’s lean about Lean

Enterprise: How High Performance Organizations Innovate at Scale.
• Host Robert Blumen quizzes Fangjin Yang, creator of the Druid analytical

database, about online analytical processing and making it real-time.
• Host Josh Long and Andrew Clay Shafer discuss the modern platform as

a service.

SOFTWARE ENGINEERING

SEPTEMBER/OCTOBER 2015 | IEEE SOFTWARE 95

system and it’s made up of a web-
server talking to a database. How
would you deploy that in terms of
Docker containers? You might have
a Docker container for the database
and a bunch of Docker containers
for your website, so in that sense it
kind of matches up. What I mean
by a container is something that can
host code or data. Essentially it’s a
separately deployable thing, like a
webserver, application server, Win-
dows server, standalone application,
browser, or mobile client.

SJ: Then the container diagram con-
tains technology choices?

SB: This is kind of hard to show on
a podcast without visuals, but if you
take the context diagram, you’re
just zooming into your system. It
really just shows the interaction be-
tween your mobile app talking to
your website, talking to your data-
base, and whatever it is that your
system is made up of. It’s only show-
ing logical containers.

SJ: Uncle Bob [Robert C. Martin]
said the Web is an implementation
detail and not part of the architec-
ture. Why should I then include tech-
nology choices?

SB: Because, ultimately, you have
to build, deploy, and support this
thing at some point. If we’re build-
ing a Web app, we need to store
the data somewhere. We are going
to have to choose a database and
a website. We’re going to have to
choose a primary language. There
are choices that we must make up
front. If we’re drawing a contain-
ers picture as part of our up-front
design exercise, maybe the technol-
ogy choice has not been decided,
so maybe we just list our options.

But if we’re drawing a containers
diagram retrospectively to describe
an existing system, there’s no rea-
son not to put the [technology]
choice in.

The major reason why I like put-
ting [technology] choices on ar-
chitecture pictures is that it brings
[them] back down to Earth again.
When you � ip through documenta-

tion in large organizations and they
have all these nice, � uffy, architec-
ture pictures, it’s just conceptual
blobs kind of � oating around, talk-
ing to one another. Once you start
to put [technology] choices on, from
my perspective as a developer, I can
start to really see and visualize and
understand how that thing works in
the real world.

SJ: Let’s go to components. What’s a
component in C4?

SB: I’ve adopted the simplest mean-
ing of component that I possibly
could: a bunch of related stuff with
a nice, clean interface. I don’t want
to get involved in discussions around
how people decompose their systems
and come up with a list of compo-
nents. That’s entirely up to the de-
sign process and the preferences they
have. For example, this could be a
logging component, which could
wrap up log4j or commons logging.
We could call that a component be-
cause it has a task, it has its own

 responsibilities, and we can create a
nice, clean interface on top.

One of the things I talk about
in my book is a simple � nan-
cial risk system. If we were doing
component- level design for the risk
system, maybe we’d have a risk cal-
culator component, which does all
of the heavy lifting and calculations.
Maybe there are some data import

components, or a data merge compo-
nent. Maybe there is an alerting and
monitoring component. It’s that level
of granularity.

SJ: Is it only a drawing, or do you
also have text?

SB: If you look at UML, it does have
a component diagram. There are a
couple of varied notations. One has
two boxes sticking out one side of
the box, and the other has the cup-
and-ball notation for [the required
and exposed interface], depending
on the interface. I � nd people strug-
gle with that notation, so I keep [it]
very simple. On the components dia-
gram, each component is just a box.
There is a component name. There’s
optionally a description of the tech-
nology choice. I draft a list of re-
sponsibilities to give a � avor of what
that component is doing. There are
a number of reasons for writing re-
sponsibilities in a diagram, but fun-
damentally, it allows me to have a
quick at-a-glance view of a diagram.

Sketches are about getting the
majority of ideas done quickly in a way
that’s accessible to developers.

SOFTWARE ENGINEERING

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

In terms of the relationships, I
just draw them as single lines—sin-
gle arrows—and I normally show
dependency using the style relation-
ship. If component A depends on
component B, I’ll draw a line from
A to B, with an arrow pointing to-
ward B and a little annotation saying
“depends on,” “uses,” or something
like that.

SJ: Because we have no standard
notation, everybody comes up with
their own notation, right? It’s im-
portant to say, this is not just an ar-
row—it has a particular meaning.

SB: If you look at my arrows on my
diagrams, they all pretty much point
one way, and they’re all annotated
on the line. So, hopefully, the direc-
tion of the arrow and the annotation
match up to explain what that rela-
tionship is.

SJ: What do effective sketches look
like?

SB: Effective sketches are really sim-
ple. Make sure you and the team
[have] a common way of thinking.
Make sure you agree on a set of ab-
stractions, whether that’s my C4
modeling or something else, and that
you have a way to describe and think
about software systems. Once you’ve
done that, understand how you draw
a diagram showing each of those
things separately—that’s what the
C4 model does.

In terms of sketching, it’s really
simple. Be conscious of notations:
if you use different shapes or colors,
make sure you have a legend explain-
ing them. Don’t leave arrows unan-
notated; make sure arrows go one
way only. Just try to create as simple
a solution as possible, and if you do
need to highlight different elements,
make sure it’s explained in the key.

This is basically what maps do.
If we get two maps of Amsterdam,
they’re both showing the same thing.
It’s the same abstraction, but they
use different colors and notations.

SJ: Is there anything important I for-
got to ask?

SB: There are a lot of questions
around the role of architects. My
general approach to architecture is to
write code. It probably should come
as no surprise, since my website is
called Coding the Architecture. For
me, it’s a very hands-on, collab-
orative role helping team members,
coaching, and mentoring.

SVEN JOHANN is a software developer at
Trifork Amsterdam. Contact him at sven.johann@
trifork.nl.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave.,
17th Floor, New York, NY 10016-5997. IEEE Computer Soci-
ety Publications Of� ce: 10662 Los Vaqueros Cir., Los Alami-
tos, CA 90720; +1 714 821 8380; fax +1 714 821 4010. IEEE
Computer Society headquarters: 2001 L St., Ste. 700, Washing-
ton, DC 20036. Subscribe to IEEE Software by visiting www
.computer.org/software.

Postmaster: Send undelivered copies and address changes to
IEEE Software, Membership Processing Dept., IEEE Service
Center, 445 Hoes Lane, Piscataway, NJ 08854-4141. Periodicals
Postage Paid at New York, NY, and at additional mailing of� ces.
Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 40013885. Return undeliverable Canadian
addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal
use of this material is permitted without fee, provided such use:
1) is not made for pro� t; 2) includes this notice and a full cita-
tion to the original work on the � rst page of the copy; and 3)
does not imply IEEE endorsement of any third-party products

or services. Authors and their companies are permitted to post
the accepted version of IEEE-copyrighted material on their own
webservers without permission, provided that the IEEE copy-
right notice and a full citation to the original work appear on
the � rst screen of the posted copy. An accepted manuscript is
a version which has been revised by the author to incorporate
review suggestions, but not the published version with copyedit-
ing, proofreading, and formatting added by IEEE. For more
information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permis-
sion to reprint/republish this material for commercial, adver-
tising, or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from IEEE
by writing to the IEEE Intellectual Property Rights Of� ce, 445
Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@
ieee.org. Copyright © 2015 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with
credit to the source. Libraries are permitted to photocopy for
private use of patrons, provided the per-copy fee indicated in the
code at the bottom of the � rst page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

See www.computer.org
/software-multimedia
for multimedia content
related to this article.

/software-multimedia
for multimedia content
related to this article.

