
98 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

Software Quality, Energy
Awareness, and More
Jeffrey C. Carver, Aiko Yamashita, Leandro Minku, Mayy Habayeb, and Sedef Akinli Kocak

FOLLOWING ON last issue’s col-
umn, this column reports on six
more papers from the 2015 Inter-
national Conference on Software
Engineering (ICSE) and its satellite
events.

“Why Good Developers Write Bad
Code: An Observational Case Study
of the Impacts of Organizational Fac-
tors on Software Quality,” by Ma-
thieu Lavallée and Pierre Robillard,
identi� ed 10 organizational factors

that can decrease software quality.
To identify the factors, Lavallée and
Robillard observed 10 months of
weekly status meetings about an in-
house software project at a large tele-
communications company. Represen-
tative factors include these:

• Internal dependencies. Many
dependencies exist between
software modules, and con� icts
on scheduling deployments exist
between projects.

• External dependencies. Long-
term dependencies on third-
party libraries exist, and
change requests to those librar-
ies cause delays.

• Organically grown processes.
Processes emerge as needed,
usually after a crisis, and are
often introduced locally rather
than organization- wide.

• Budget protection. Develop-
ers feel it’s cheaper in the short

term to build a wrapper than to
solve a problem.

• Scope protection. Rather than
prioritizing a global scope,
teams prioritize a local scope
and transfer as many require-
ments as possible to other
projects.

• Undue pressure. Managers
and senior developers cir-
cumvent team policies to give
direct orders to the team and
threaten it.

For each factor, the authors sug-
gested corrective actions.

Although the authors’ � ndings in-
dicate that these problems might not
affect project success, they do affect
software quality, which in turn in-
creases software maintenance costs
over time. Other key takeaways in-
clude these:

• The lack of centralized strategies
for making key decisions might
be re� ected through con� icting
software modules.

• Practitioners can use these orga-
nizational antipatterns as hints
to warn stakeholders, custom-
ers, managers, and team mem-
bers when their actions might
result in code that’s costlier to
maintain.

This paper appeared in the main re-
search track of ICSE ’15; access it at
http://goo.gl/yrCVHh.

“The Last Line Effect,” by
Moritz Beller and his colleagues,
discussed the phenomenon in which
the last line or statement of a micro-
clone (a very short segment of dupli-
cated code) is much more likely to be
faulty than any other line or state-
ment. (The last- line effect has caught
the reddit community’s attention;
see www.reddit.com/r/programming
/comments/270orx/the.)

Better training and process
management can avoid operational
faults and misuse.

PRACTITIONERS’ DIGEST

	 NOVEMBER/DECEMBER 2015 | IEEE SOFTWARE � 99

To detect such microclones, which
traditional clone detection tools
miss, Beller and his colleagues used
the PVS-​Studio static-​analysis tool
(www.viva64.com/en/pvs-​studio).
They analyzed 202 microclones from
208 well-​known open source sys-
tems. They found that, when a fault
was present, the last statement was
17 times more likely to be faulty than
all other statements combined. For
faulty microclones consisting of only
two statements, the second statement
was always the faulty one.

These results suggest that devel-
opers must be extra careful when
reading, modifying, reviewing, or
creating the last line or statement of
a microclone, especially after per-
forming copy-​and-​paste. As code
quality consultant Thomas Kinnen
said, “I perform tons of code re-
views. After having read ‘The Last
Line Effect,’ I check the last line or
statement in a microclone extra care-
fully.” This paper appeared in the In-
ternational Conference on Program
Comprehension; access it at http://
goo.gl/bbkGH9.

“An Empirical Study on Quality

Issues of Production Big Data Plat-
form,” by Hucheng Zhou and his
colleagues, described an analysis of
210 incidents from Microsoft Pro-
ductA (anonymized), a company-​
wide multitenant big data computing
platform serving thousands of cus-
tomers from hundreds of teams. Sys-
tem and customer factors led to the
highest proportion of incidents. This
suggests that

•	 broader testing, especially online
testing in real production, is vi-
tal to detect problems early and

•	 better training and process man-
agement can avoid operational
faults and misuse.

Another important aspect of this
research is the catalog of telemetry
data, which other providers of big
data frameworks can use. The met-
rics in this catalog include job-​ or
vertex-​specific metrics (for exam-
ple, latency metrics and task I/O
metrics), performance counters (for
example, CPU usage and memory
usage), and job or vertex logs (for
example, log entries of interesting

execution points). The paper also
described mitigation strategies that
other providers of big data frame-
works can use. It was part of the
ICSE ’15 Software Engineering in
Practice track; access it at http://goo
.gl/AYcGhR.

“Mining Energy-​Aware Com-
mits,” by Irineu Moura and his col-
leagues, examined techniques devel-
opers use to save energy, which is
especially important for devices with
limited battery life, such as mobile
devices. Users often factor energy
efficiency into their choice of mo-
bile apps. Even though this quality
is important to users, little is known
about the strategies adopted to mini-
mize energy consumption or their
impact on software quality.

The information mined from
371 energy-​aware commits from
GitHub identified these energy-​
saving techniques:

•	 altering the frequency and volt-
age of the CPU and peripherals
such as Wi-​Fi,

•	 using power-​efficient libraries,
•	 disabling features,

100	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

PRACTITIONERS’ DIGEST

•	 fixing energy-​related bugs,
•	 implementing low-​power idling,

and
•	 manipulating time-​outs to stop

computation.

The authors also identified possible
negative side effects, including cor-
ruption of serial transmission and
low responsiveness or performance.
Furthermore, the results showed that
developers were often unsure whether
their energy-​aware strategies were
effective. There is a need for better-
documented energy libraries. This
paper was part of the 12th Working
Conference on Mining Software Re-
positories; access it at http://goo.gl
/AcRzDq.

“An Empirical Study of Archi-
tectural Change in Open-​Source
Software Systems,” by Duc Minh
Le and his colleagues, reported on
an analysis of several hundred ver-
sions of 14 open source Apache sys-
tems. The authors’ key findings in-
clude these:

•	 A semantic (conceptual) view
reveals notably different aspects
of system evolution than the cor-
responding structural view.

•	 Architectural changes can occur
inside components even when
the overall architecture remains
stable.

•	 The package structure provides
only a limited indication of the
system architecture.

•	 Dramatic architectural changes
tend to occur both between the
end of one major version and the
beginning of the next and across
one or more minor versions.

These findings provide insight into
how architectures change over time.
This paper was part of the 12th
Working Conference on Mining

Software Repositories; access it at
http://goo.gl/YM4cPT.

“Supporting Physicians by RE4S:
Evaluating Requirements Engineer-
ing for Sustainability in the Medical
Domain,” by Birgit Penzenstadler
and her colleagues, presented Re-
quirements Engineering for Sustain-
ability (RE4S). RE4S is a method
that uses checklists and reference
models to guide software engineers
in including sustainability through-
out requirements engineering, from
identifying stakeholders, to analyz-
ing the domain, to defining a usage
model, and finally to specific require-
ments. To help software engineers
identify sustainability concerns, the
checklist starts with four questions
about the system’s purpose, impact,
stakeholders, and goals and con-
straints. RE4S also provides refer-
ence models for sustainability goals
and stakeholders.

The paper included a case study
of Cognatio, a system that supports
communication between patients
and physicians. Patients can track
prescribed medications and observed
symptoms; physicians can send re-
minders and review patient data.
Using RE4S to consider sustainabil-
ity during requirements engineering
improved the software’s social as-
pects (for example, interaction be-
tween user groups analyzed from
different perspectives) and environ-
mental aspects (for example, avoid-
ing overprescription and misaligned
prescriptions). So, most of the devel-
oped artifacts reflected sustainabil-
ity concerns that would have been
missed otherwise. This example il-
lustrates how using RE4S can help
developers systematically integrate
sustainability goals and require-
ments with other requirements, and
refine them into software-​specific
constraints considered during design

and implementation.
An online version of RE4S is at

http://birgit.penzenstadler.de/se4s.
This paper was part of the 4th In-
ternational Workshop on Green and
Sustainable Software; access it at
http://goo.gl/RuyBJ0.

F eedback or suggestions are
welcome. In addition, if you
try or adopt any of the prac-

tices included in the column, please
send the paper authors and Jeffrey
Carver (carver@cs.ua.edu) a note
about your experiences.

JEFFREY C. CARVER is an associate professor
in the University of Alabama’s Department of
Computer Science. Contact him at carver@cs.ua
.edu.

AIKO YAMASHITA is a data analyst and en-​
trepreneur at Yamashita Research and is an
adjunct associate professor at Oslo and Akershus
University College of Applied Sciences. Contact
her at aiko.fallas@gmail.com.

LEANDRO MINKU is a lecturer (assistant pro-
fessor) in the University of Leicester’s Depart-
ment of Computer Science. Contact him at
l.l.minku@cs.bham.ac.uk.

MAYY HABAYEB is a master’s student in
Ryerson University’s Data Science Laboratory.
Contact her at mayy.habayeb@ryerson.ca.

SEDEF AKINLI KOCAK is PhD candidate and
research assistant in Ryerson University’s Data
Science Laboratory. Contact her at sedef
.akinlikocak@ryerson.ca.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

