
116 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Robert Blumen
Symphony Commerce
robert@robertblumen.com

The Modern Cloud-
Based Platform
Stefan Tilkov

 THIS MONTH’S EXCERPT from Soft-
ware Engineering Radio (www.se-radio
.net) features the third in a recent se-
ries of podcasts touching microservices,
beginning with 210: Stefan Tilkov on
 Microservices and 213: James Lewis on
Microservices. Docker was the subject of
the fourth podcast, episode 217, in which
Charles Anderson tracked down that proj-
ect’s founder for an in-depth discussion.

Net� ix established itself as a com-
pany by disrupting the video rental in-
dustry with monthly pricing, a deep
back catalog, and machine-learning-
based recommendations. But it’s barely
in the DVD business now. The second
Net� ix revolution has been an aggres-
sive move into streaming content from
the Amazon cloud. Net� ix and its US
customers are one of the heaviest users
of the US Internet, by some estimates ac-
counting for over one-third of all traf� c
during peak movie-watching hours. Its
movie-streaming business has been the
source of technological innovations as it
has innovated to meet consumers’ ever-
rising standards.

Much of what Net� ix has learned
is now public information through the
Net� ix open-source stack and the tire-
less efforts of Adrian Cockroft (formerly
of Net� ix), one of the major cloud ar-
chitects during his years there. Cockroft
has been a regular speaker at tech con-
ferences, many of which are online.

In SE Radio episode 216, Cockroft
and our newest host, Stefan Tilkov, con-
verse about Net� ix’s move to the cloud,

development speed as the critical com-
petitive factor, how the monolith gave
way to microservices, microservices at
scale, microservices and DevOps, the
Net� ix service discovery infrastructure,
distributed debugging in a deep mi-
croservices stack, geographic redundancy
on the Amazon cloud, being always on,
availability over consistency, the strate-
gic plan behind open source, how open
source helps with hiring in a competitive
market, and what Adrian is doing post-
Net� ix in the venture-capital � eld.

We would enjoy hearing from read-
ers of this column and listeners to the
podcast. We accept incoming emails at
 se-radio@computer.org and tweets and
direct messages to @seradio. You can also
visit our Facebook page, Google+ group,
and LinkedIn group. To hear this inter-
view in its entirety, visit www.se-radio
.net. —Robert Blumen

It’s hard to read any sort of article
these days that doesn’t somehow
mention the cloud or cloud computing.
Despite that, how do you de� ne those
things? What is the cloud, and what
does cloud computing mean to you?
The biggest change is when someone
working at a company thinks, “I need
some machines to do something.” You
have to � le a ticket and wait for some-
body else to get around to sorting out
that ticket. In some big companies, it

SOFTWARE
ENGINEERING

Continued on p. 113

s2sen.indd 116 2/4/15 6:36 PM

 MARCH/APRIL 2015 | IEEE SOFTWARE 113

SOFTWARE ENGINEERING

takes a month or two to get just a
single machine. The real thing that
makes it cloud computing is self-
service. You make an API call, and
a few minutes later a bunch of ma-
chines turn up. That is the most fun-
damental difference. It speeds up the
whole procurement cycle. It makes
everything much more dynamic.

You can use the cloud as a faster
way to do the things you used to do
in datacenters. But the really inter-
esting things come when you start
realizing what happens when you
use it in a much more dynamic way
by using machines as ephemeral re-
sources. You can turn them on, turn
them off, use a machine for a cou-
ple of hours, and then give it back.
That is the essence of cloud. It comes
down to putting self-service tools
in the hands of the developers to do
things themselves, rather than mak-
ing “what operations used to do”
into an API.

Developers don’t care whether
it’s a public cloud like AWS [Ama-
zon Web Services] or a private cloud
inside the company, as long there’s
enough capacity for whatever you
need to do. It’s just there.

How did Netflix end up moving to
the cloud?
Netflix started off as a DVD ship-
ping company. It wasn’t even seen
as a very big technology company at
the time. When I joined, its person-
alization algorithms were considered
its primary interesting technology,
not its scale.

Netflix had around 6,000,000
customers when I joined in 2007.
Typically, every weekend the cus-
tomers would visit the website, de-
cide what DVDs they wanted to have
shipped in the next week, and priori-
tize by shuffling their queue. Every
time they sent a disc back, we would

send them another one. The interac-
tion with Netflix was sending a disc
in through the postal service. That
required a few tens of Web servers,
a few back-end machines, and a big
database running on a monolithic
centralized app.

That year, we launched stream-
ing with a very small catalog, but
it started to take off quite quickly.
When you interact with a streaming
service, every click goes to the web-
site. You browse around the web-
site. When you decide that you want
to watch something, you click Play.
Then traffic goes back and forth fig-
uring out what to do: finding the ma-
chine, finding the movie, doing au-
thorization, giving you a security key
to decode that movie, and then log-
ging the activity so that we can make
sure that there’s good quality of ser-
vice (rebuffers, calculating the speed
to run at, and determining which
content delivery network to use).

There are enormously many trans-
actions to the back end. Streaming
generates around a thousand times
more Web requests than the DVD
service. That was fine when we were
just starting out with a small number
of machines, a small number of mov-
ies, and not many customers using it.
But the usage rate started to increase
very rapidly because there was noth-
ing stopping customers from watch-
ing a lot of movies. They no longer
had to send a DVD back and wait for
another one. So, we started getting a
lot of people binge-watching.

The number of interactions peo-
ple had with Netflix, the number of
things they watched, and the number
of interactions with the website per
view all went up by orders of magni-
tude. Our datacenter consisted of a
couple of small machines in the cor-
ner that were put in to initially launch
streaming. And they were running

out of capacity incredibly quickly. In
2008, there was a big outage when
the central monolithic app broke due
to a storage problem (a corruption in
the storage area network corrupted
Oracle). It was a big mess.

As a result, we decided we were
not very good at running stuff in
the datacenter. We started thinking
about how to scale for this incredi-
ble future workload, where we didn’t
know how fast it would grow. And
that really comes down to the core
of why this is interesting: because we
could not predict how much capacity
we would need.

In 2009, we moved some of the
back-end batch workloads like encod-
ing movies to the cloud. In 2010, we
moved the front-end website to the
cloud. In 2011, we moved the database
back end so that the master copies of
all the data were in the cloud, and in
2012, we started open- sourcing the
tooling we’d built to do that. Those
are the main history points.

You’ve hinted that software archi-
tecture changes when you move
to the cloud. What changes?
You can use cloud as nothing more
than a faster way to do datacen-
ter stuff, but that misses most of
the benefit. The real benefit comes
when you start doing things that you
couldn’t have done in your datacen-
ter. You can trivially do hardware
experiments that last a few days on
a huge scale, scattered all over the
world, something that you wouldn’t
even think of doing if you had to tell
your ops guys, “Hey, I need a liber-
ally distributed database with a hun-
dred nodes in it and a couple hundred
terabytes of solid state disc. And I’d
like it this afternoon, in six different
datacenters. And whatever.”

We did this and we did it with-
out asking permission. It took about

Continued from p. 116

s2sen.indd 113 2/4/15 6:36 PM

SOFTWARE ENGINEERING

114 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

20 minutes to create. We built a
very write-intensive globally dis-
tributed database to see what would
happen. The decision to do it was
made while we were walking out of
a meeting. The guy who did it wan-
dered by somebody else’s cube and
asked that person to set it up. That
afternoon it was created. We put 18
Tbytes of data from backup on it.
And then we hammered the thing as
hard as we could with all kinds of
error and failure injections to make
sure it worked well. A few days later
we removed it.

You couldn’t do that if you had
real infrastructure because it would
take too long to get approval. In
a datacenter, you would need a
multimillion- dollar machine. I didn’t
know in advance what it would cost,
but it worked out to a few hundred
dollars per hour. The value we got
out of it was much greater: at a meet-
ing the following week, we said,
“We just proved this works.”

At the time, there was an internal
argument going on about how we
would build distributed systems and
whether we could rely on high band-

width in a global cloud. When you
go to a meeting with working code
or benchmarks, you win arguments.
That short-circuited an enormous
amount of what would have been de-
bate and justi� cation.

Can you explain the Chaos
Monkey?
I will explain the principle, and
then it will be obvious that it makes
sense. There is an analogy of cattle
versus pets. If you know your ma-
chines in production by name, and if
one goes down everyone gets upset,
then that’s a pet. You have to take
it to the vet if it gets sick. The other
kinds of machines are cattle. When
you have a herd of cattle in the � eld,
they produce so many gallons of
milk. If a few of them die, you get
slightly less milk that day, and you
buy some more cattle.

The principle that Net� ix ad-
o pted was that everything in produc-
tion is a herd of cattle. There are no
pets, no individual machines that if
one went down anybody would care
about. Everything is on an auto-
scaler, even a single machine.

Once you have established that
principle, then you have to test that
compliance by killing individual
machines chosen at random. That
is what the Chaos Monkey does. It
picks a random time to stop some
machines. The autoscaler should
automatically replace it. If some-
body snuck an individual machine
into production, the Chaos Mon-
key killed it, and they got upset,
well, they should not have done
that, right? It forces the developers
to think in the new way. Everything
you launch is on an autoscaler even
if there is only one machine in the
group. It must be a stateless, dispos-
able machine that can be restarted.

They took it to the next level

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
• 217—Charles Anderson talks with James Turnbull, the creator of Docker,

a popular lightweight Linux deployment tool. Somewhere between a
process and a virtual machine, Docker is emerging as a container for
isolating microservices.

• 218—Robert Blumen discusses the Command-Query-Responsibility Seg-
regation (CQRS) architectural pattern with Udi Dahan, one of the pattern’s
cocreators. CQRS formally separates a distributed system into a write
master and one or more read models.

• 219—Jeff Meyerson interviews Apache Kafka committer Jun Rao on the
high-throughput distributed event bus that combines features of messag-
ing and publish–subscribe.

UPCOMING EPISODES
• 220—Robert Blumen sits down in person with Jon Gifford for a conver-

sation about logging, APIs, log record formats, and how search engines
are transforming the collection and interpretation of program messages.

• 221—Johannes Thönes and chief guru Jez Humble converse on the
origins of continuous delivery (CD) in the lean movement, how to build a
CD culture, and how to introduce CD in regulated environments.

• 222—Apache Storm Founder Nathan Marz chats with Jeff Meyerson
about stream processing, “real-time Hadoop,” the lambda architecture,
and thinking about streaming in terms of spouts and bolts.

s2sen.indd 114 2/4/15 6:36 PM

SOFTWARE ENGINEERING

MARCH/APRIL 2015 | IEEE SOFTWARE 115

with the data layer, which is a triple-
replicated Cassandra back end. The
Chaos Monkey kills those as well—
including the discs that are inside
the instances. You might lose a few
hundred gigabytes of data when you
delete the instance. It’s not attached
storage: the disks are inside the in-
stance. But it’s replaced as the data
is resynchronized from the other two
copies, proving that you can build an
ephemeral data layer as well.

This is a different way of thinking
from a sort of datacenter mentality
where machines should always stay
up. You would use perfect machines
if you could. Instead, you create
herds of machines that are extremely
resilient because you can lose large
numbers of them and everything still
works.

Let’s talk about the CAP (consis-
tency, availability, partition toler-
ance) theorem. Which part of it do
you apply? Which side of the trian-
gle do you lean to?
You have to decide whether consis-
tency or availability is most impor-
tant to you. The basic principle of

Net� ix is that no partition or failure
should take out the service. We lean
very heavily to the availability side
when things are partitioned, which
means that if you slice Net� ix up
and drop all the networks between
all the different parts of the sys-
tem, the system continues to work.
The isolated parts will just carry on
working. And they’ll gradually be-
come inconsistent with the rest of the
system. When you reconnect, “last
writer wins” takes over. Cassandra
kicks in. Whoever wrote a piece of
data last ends up overwriting what-
ever was written in the meantime.

The system gradually gets back to
being consistent, although you may
lose a few updates if you modi� ed
something that was modi� ed some-
where else. Generally it doesn’t, and
anyway, it’s better to deal with in-
consistency than to be down. For a
service like Net� ix, where 50 mil-
lion people are trying to watch mov-
ies around the world, they have an
expectation that when they turn on
a TV set, it should just work. There
should never be a message saying,
“We’re down right now.”

It’s hard to tell a three-year old
that they can’t watch their dinosaur
cartoons because Net� ix has failed.

Yeah, tell me about it.

STEFAN TILKOV is cofounder and principal
consultant at innoQ, a technology consulting
company with of� ces in Germany and Switzer-
land. Contact him at stefan.tilkov@innoq.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave., 17th
Floor, New York, NY 10016-5997. IEEE Computer Society Publica-
tions Of� ce: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1
714 821 8380; fax +1 714 821 4010. IEEE Computer Society head-
quarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscribe to
IEEE Software by visiting www.computer.org/software.

Postmaster: Send undelivered copies and address changes to IEEE
Software, Membership Processing Dept., IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid
at New York, NY, and at additional mailing of� ces. Canadian GST
#125634188. Canada Post Publications Mail Agreement Number
40013885. Return undeliverable Canadian addresses to PO Box 122,
Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is
not made for pro� t; 2) includes this notice and a full citation to the
original work on the � rst page of the copy; and 3) does not imply
IEEE endorsement of any third-party products or services. Authors

and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permis-
sion, provided that the IEEE copyright notice and a full citation to
the original work appear on the � rst screen of the posted copy. An
accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version
with copyediting, proofreading, and formatting added by IEEE. For
more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission
to reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Of� ce, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2015 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy for private use of
patrons, provided the per-copy fee indicated in the code at the bottom
of the � rst page is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

NEXT ISSUE:
May/June 2015

Trends in Systems
and Software
Variability

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

s2sen.indd 115 2/4/15 6:36 PM

