
102 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Robert Blumen
Symphony Commerce
robert@robertblumen.com

Docker
Charles Anderson

THE SOFTWARE ENGINEERING Ra-
dio podcast welcomes two new hosts
this year: Josh Long and Sven Johann,
whose interview with Software Archi-
tecture for Developers author Simon
Brown is coming soon. Later this year,
we’ll publish an episode in which I in-
terview all the podcast hosts and some
of the editorial staff. This will give our
listeners the opportunity to � nd out why
busy software engineers are volunteering
their time to this podcast.

In episode 217, host Charles Ander-
son talks with James Turnbull, a soft-
ware developer and security special-
ist who’s vice president of services at
Docker. Lightweight Docker containers
are rapidly becoming a tool for deploy-
ing microservice- based architectures, a
topic we’ve covered in several shows and
in last issue’s column.

Portions of the interview that aren’t
featured in this column owing to space
include networking between contain-
ers, how Docker images are built, the
DockerHub repository for sharing im-
ages, developer use cases for containers,
the role of containers in a microservices
architecture, and Docker’s impor-
tance for DevOps. You can download
the full episode at www.se- radio.net.
—Robert Blumen

What is Docker?
Docker is a container virtualization
technology. So, it’s like a very light-
weight virtual machine [VM]. In addi-
tion to building containers, we provide

what we call a developer work� ow,
which is really about helping people
build containers and applications inside
containers and then share those among
their teammates.

What problems does it address?
There are a couple of problems we’re
looking at speci� cally. The � rst one is
aimed at the fact that a VM is a fairly
large- weight compute resource. Your av-
erage VM is a copy of an operating sys-
tem running on top of a hypervisor run-
ning on top of physical hardware, which
your application is then on top of. That
presents some challenges for speed and
performance, and some challenges in an
agile sort of environment.

So, we’re aiming to solve the problem
of producing a more lightweight, more
agile compute resource. Docker contain-
ers launch in a subsecond, and you can
then have a hypervisor that sits directly
on top of the operating system. So, you
can pack a lot of them onto a physical
or virtual machine. You get quite a lot of
scalability.

For most people, the most important
IT asset they own is the code they’re de-
veloping, and that code lives on a devel-
oper’s workstation or laptop or in a dev
test environment. It’s not really valuable
to the company until it actually gets in
front of the customer. The process by
which it gets in front of a customer, that
work� ow of dev test, staging, and de-
ployment to production, is one of the
most [tension- fraught] in IT.

SOFTWARE
ENGINEERING

SOFTWARE ENGINEERING

MAY/JUNE 2015 | IEEE SOFTWARE 103

The DevOps movement, for ex-
ample, emerged from one of the clas-
sic stumbling blocks in a lot of orga-
nizations. Developers build code and
applications and ship them to the
operations people, only to discover
that the code and applications don’t
run in production. This is the classic
“it works on my machine; it’s opera-
tions’ problem now.”

We were aiming to build a light-
weight computing technology that
helped people put code and applica-
tions inside that resource, have them
be portable all the way through the
dev test, and then be able to be in-
stantiated in production. We made
the assumption that what you
build and run in dev test looks the
same as what you build and run in
production.

What are some typical use cases
in which a developer or admin
might want to use Docker?
We have two really hot use cases
right now. The � rst one is continu-
ous integration and continuous de-
ployment. With Docker being so
lightweight, developers can build
stacks of Docker containers on their
laptops that replicate some produc-
tion environments—for example, a
LAMP stack or a multitier applica-
tion. They can build and run their
application against that stack.

You can then move these con-
tainers around—they’re very por-
table. Let’s say you have a Jenkins
continuous- integration environment.
Instead of relying on VMs, we have
to spin up a new VM, install all the
software, install your application
source code, run the tests, and then
probably tear it all down again be-
cause you may have destroyed the
VM as part of the test process.

Let’s say it would take 10 minutes
to build those VMs. In the Docker

world, you can build those VMs or
the containers that replace them in
a matter of seconds, which means
if you’ve cut 10 minutes out of your
build–test run, that’s an amaz-
ing cost saving. It allows you to get
much more bang out of your buck
from the continuous- deployment
and continuous- testing model.

The other area where we’re seeing
a lot of interest is what we call high
capacity. Traditional VMs have a hy-
pervisor, which probably occupies
about 10 to 15 percent of the capacity
of a host. We have a lot of custom-
ers for whom that 10 to 15 percent is
quite an expensive 10 to 15 percent.

They want to say, “Okay, let’s root
that out, replace it with a Docker
host, and then we can run a lot more
containers.” We can run hyperscale
numbers of containers on a host con-
tainer because without a hypervisor,
they sit right on top of the operating
system and are very, very fast.

IBM released some research
last year that suggested that on a
per- transaction basis, the average
 container is about 26 times faster
than a VM, which is pretty amazing.

Docker is based on containers,
which provide an isolated environ-
ment for user- mode code. Some of

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
• 219—Jeff Meyerson talks with Apache Kafka project committer Jun Rao

about the popular streaming and messaging framework, and the chal-
lenges of building a reliable distributed messaging system.

• 220—Robert Blumen is on location with Jon Gifford to learn about using
logging to provide insights into programs’ run-time behavior, modern log-
ging infrastructure based on a search engine, and logging as a service in
the cloud.

• 221—Jez Humble joins host Johannes Thönes to explore the benefits and
challenges of implementing continuous delivery, from both a technological
and cultural standpoint.

UPCOMING EPISODES
• Sven Johann interviews Simon Brown, author of Software Architecture

for Developers, about Brown’s approach to developing, documenting, and
communicating software architecture via a set of simple drawings.

• Joshua Suereth and Matthew Farwell appear with host Tobias Kaatz to
discuss software builds, the SBT (a scala build tool), and the guests’ new
book.

• Stefan Tilkov sits down with Mark Nottingham to learn about the game-
changing new version of the venerable HTTP protocol and its impact on
Web application development.

SOFTWARE ENGINEERING

104	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

our listeners might be familiar with
earlier container systems such as
Solaris Zones or FreeBSD jails, or
even going back to the chroot sys-
tem call from Unix Version 7. How
does the container have its own
copy of the file system without du-
plicating the space between iden-
tical containers, especially when
you’re talking about hyperscale?
One of the other interesting tech-
nologies Docker relies on is a con-
cept we call copy-​on-​write. Many
file systems, such as Btrfs, Device
Mapper, and AuFS, all support this
copy-​on-​write model, which is what
the kernel developers call a union
file system. Essentially, what hap-
pens is that you build layers of file
systems. So, every Docker container
is built on what we call an image.
The Docker image is like a prebaked
file system that contains a very thin
layer of libraries and binaries that
are required to make your applica-
tion work, and perhaps your applica-
tion code and maybe some support-
ing packages.

For example, you might have a
LAMP stack that might have a con-
tainer that has Apache in it, and libc,
and a small number of very thin
shims that fake out an operating sys-
tem. That image is saved in what we
call a file system layer.

If I was to then make a change to
that image—for example, if I wanted
to install another package—I’d say,
“I want to have PHP as well.” On an
Ubuntu system I’d say, “apt-​get in-
stall PHP,” and Docker says, “You
want to create a new thing. I’m go-
ing to create a new layer on top of
our existing layer, and I’m only go-
ing to add in the things that I have
changed.” So, for example, “I’m go-
ing to add in the new package, and
that’s it.” That is a layered construc-
tion. I end up with a read-​only file

system with multiple layers. You can
think about this layer a bit like a git
commit or a version control com-
mit. As a result, I end up with a very
lightweight system that only has the
things on it that I want.

Docker understands that I can
cache things. So it says, “You’ve al-
ready installed PHP. I’m not going
to make any changes to the environ-
ment; I’m not going to have to write
anything. So, I’m going to just reuse
that existing layer, and I’ll drag that
in as the PHP layer.” For example,
if you’re changing your source code,
instead of a VM you may be re-
building the DM. With Docker, you
say, “Here’s the new commit of my
source code. I’m going to add it to
my Docker image and maybe that’s
10 Kbytes worth of code change.”
Docker says, “That’s the only thing
you want to change; therefore, that’s
the only thing I’ll write to the file
system.” As a result, it’s very light-
weight, and with the cache, extraor-
dinarily fast to rebuild.

Explain how a process in a con-
tainer can only see other pro-
cesses in the container.
Docker relies heavily on two pieces
of Linux kernel technology. The first
one is called namespaces. If you run
a new process on the Linux kernel,
then you’re making a system call to
the namespaces: “I want to create a
new process.” If you want to create a
new network interface, you’re mak-
ing a call to the network namespace.
The kernel assigns you a namespace
that has a process and whatever
other resources you want. For ex-
ample, it might have some access to
the network. It might have access to
some parts of the file system. It might
have access just to memory or CPU.

When we create a Docker con-
tainer, we’re basically making a

bunch of calls to the Linux kernel to
say, “Can you build me a box? The
box should have access to this par-
ticular file system, access to CPU and
memory, and access to the network,
and it should be inside this process
namespace.” And from inside that
process namespace, you can’t see any
other process namespaces outside it.

The second piece of technology
we use is called control groups, or
cgroups. These are designed around
managing the resources available
to a container. It allows us to do
things such as “This container only
gets 128 Mbytes of RAM” or “This
container doesn’t have access to the
network.” You can add and drop ca-
pabilities as needed, and that makes
it fairly powerful to be able to granu-
larly control a container in much the
same way you would with the point-​
and-​shoot VM interface to say, “Get
this network interface,” “Get this
CPU core,” “Take this bit of mem-
ory access to this file system,” or
“Create a virtual CD-​ROM drive.”
It’s a similar level of technology.

Besides files and processes, con-
tainers provide an isolated envi-
ronment for network addresses
and ports. For example, I can have
Web servers running in multiple
containers all using port 80. By
default, the container doesn’t ex-
pose network ports to the outside.
However, they can be exposed
manually or intentionally, which
is a bit like opening up ports on a
firewall such as iptables, right?
That’s correct. Each container has
its own network interface, which is
a virtual network interface. You can
run processes that use network ports
inside those containers. For exam-
ple, I can run 10 Apache containers
inside port 80, inside the container.
And then, outside the container, I

SOFTWARE ENGINEERING

can say, “Expose this port.” And if
I want to actually expose port 80 to
port 80 I can, but obviously I can
only do that once, because you can
only map one port inside the con-
tainer to the one port outside the
host. By default, Docker chooses a
random port and says, “I’m going
to do a network address translation
between this port 80 inside the con-
tainer and, say, port 49154 on the
host.”

For example, I could have mul-
tiple Apache processes running on
different ports. Then I put a service
discovery tool or a load balancer
or some sort of proxy in front of it.
HAProxy is very commonly used.
We can use things such as nginx or
service discovery tools such as Zoo-
Keeper, etcd, and Consul that allow
you to either proxy the connections
or provide a way to say, “I want this
application. Query that particular
service discovery tool,” or “That
application belongs to these 10 con-
tainers, and you can choose one of
these 10 ports,” which will connect

to the Apache process. So it’s a very
� exible, scalable model. It’s designed
to run complicated applications.

Those are going to be aimed at
running containers on multiple
hosts as well, because so far
we’ve been talking about Docker
on a single host, right?
We launched a prototype called lib-
swarm, like a swarm of wasps. That
tool was designed to prototype how
you would get Docker hosts to talk
to one another, because currently
containers on one Docker host have
to use the network to talk to one an-
other. But they should have a back
channel of communication. You
should essentially be able to have
Docker hosts communicating to-
gether. We look at this like a way
to say, “I’m a Docker host and I run
Apache Web services,” and another
Docker host is saying, “I have a data-
base back end that needs an Apache
front end. Can you link one of your
containers with one of my contain-
ers?” This starts to create some re-

ally awesome stories around scal-
ability, autoscaling, and redundancy.
And, you start to be able to build re-
ally complex applications, which up
until now has been very challenging
for a lot of organizations.

CHARLES ANDERSON is a software devel-
oper with more than 30 years of experience
in operating systems, networking, databases,
software engineering, and testing. His experi-
ence includes embedded systems, Unix kernel
internals, client- server desktop applications, Web
applications, and Hadoop applications. He also
taught many of these subjects at the university
level. Contact him at cander@cander.org.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave., 17th
Floor, New York, NY 10016-5997. IEEE Computer Society Publica-
tions Of� ce: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1
714 821 8380; fax +1 714 821 4010. IEEE Computer Society head-
quarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscribe to
IEEE Software by visiting www.computer.org/software.

Postmaster: Send undelivered copies and address changes to IEEE
Software, Membership Processing Dept., IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid at
New York, NY, and at additional mailing of� ces. Canadian GST
#125634188. Canada Post Publications Mail Agreement Number
40013885. Return undeliverable Canadian addresses to PO Box
122, Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is
not made for pro� t; 2) includes this notice and a full citation to the
original work on the � rst page of the copy; and 3) does not imply
IEEE endorsement of any third-party products or services. Authors

and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permis-
sion, provided that the IEEE copyright notice and a full citation to
the original work appear on the � rst screen of the posted copy. An
accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version
with copyediting, proofreading, and formatting added by IEEE. For
more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission
to reprint/republish this material for commercial, advertising, or
promotional purposes or for creating new collective works for resale
or redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Of� ce, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2015 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy for private use of
patrons, provided the per-copy fee indicated in the code at the bot-
tom of the � rst page is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

