
44	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Jan Bosch, Chalmers University of Technology

Rafael Capilla, Rey Juan Carlos University

Rich Hilliard, consulting software systems architect

THE FOLLOWING STORY has hap-
pened thousands of times. A com-
pany puts a product on the market,
and the product proves to be very
successful. Customers use the prod-
uct and it’s almost perfect, but it
needs some changes to make it really
fit the context in which it’s used. The
company considers this and provides
a customer-specific version. At the
same time, on the basis of customer
feedback, the company realizes that
several customer segments would be
better served with a product focused

for each segment. So, the company
ends up with a multitude of signifi-
cantly similar product versions.

At this point, the company re-
alizes that many of the required
changes must be implemented for
most or even all product versions
and that implementing the same
change multiple times is really inef-
ficient, time-consuming, and error
prone. This often results in the cre-
ation of a platform from which the
different products and customer-
specific versions can be derived. This

significantly improves development
efficiency. However, a new challenge
enters the arena: managing the points
in the platform where the product
versions’ functionalities differ—that
is, variability management.

Variability management involves
two key challenges. First, industrial
reality shows that for successful
platforms, the number of variation
points, variants (alternatives that
can be selected for a variation point),
and dependencies between variation
points and variants easily reaches
staggering levels. We’ve seen cases
with tens of thousands of variation
points. The sheer number of varia-
tion points often results in having to
allocate a rapidly growing percent-
age of the R&D budget to resolve

FOCUS: GUEST EDITORS’ INTRODUCTION

	 MAY/JUNE 2015 | IEEE SOFTWARE � 45

the complexities resulting from man-
aging such variation. In addition, it
often results in a situation in which
no one in the company has a com-
prehensive overview of the avail-
able variability and consequently the
maintenance in terms of removing
obsolete variation points, changing
binding times, and other tasks. If the
company doesn’t address this situa-
tion as part of technical-debt man-
agement, the cost of deriving new
products from the platform could ri-
val the cost of building each product
from scratch.

The second challenge pertains
particularly to embedded systems,
which consist of mechanical, hard-
ware, and software parts. The me-
chanical and hardware parts also
exhibit variation. Such variation,
however, differs considerably from
software variability in that it tends
to primarily involve the system’s
manufacturing stage and is con-
cerned more with physical dimen-
sioning and assembly than with
system functionality. However, the
need exists to define dependencies
between the mechanical and hard-
ware variations and the software
variations. Several companies we’ve
collaborated with are struggling
with this, especially as the amount
of software and the functionality it
provides grow aggressively and as
these systems’ value is increasingly
defined through software.

Software variability concerns all
lifecycle phases from requirements
elicitation to postdeployment and
run time. In principle, in each phase,

•	 a variation point can be
introduced,

•	 variants can be added,
•	 dependencies can be introduced,
•	 a specific variant can be bound

to the variation point, and
•	 an already bound variant can be

replaced with another variant.

In addition, the selection of a vari-
ant can affect the rest of the system
owing to dependencies between the
variation points and variants.

Software
Variability Today
More than 20 years ago, Kyo-Chul
Kang and his colleagues introduced
the FODA (Feature-Oriented Do-
main Analysis) model.1 FODA de-
scribes systems’ visible properties
in terms of product features, and it
models such variability using vari-
ants (features that could be manda-
tory, optional, or alternative) and
variation points representing logi-
cal relationships between variants.
Moreover, FODA describes basic re-
lationships between features. It uses
requires and excludes constraints to de-
limit the variability’s scope in space
(the number of allowed products you
can build) and to define the incom-
patibilities of infeasible products, of-
ten motivated by business and tech-
nical reasons.

Since the advent of software
product lines (SPLs) for building
multiple and related products in a
given domain, variability models
have increased in popularity, too.
From 1998 to 2008, researchers pro-
posed and implemented numerous
extensions and enhancements to the
original FODA model. Table 1 lists
the most important contributions
to software variability and includes

proposals regarding the extension of
feature models (FMs).2

Most of the FODA extensions in
Table 1 focus on how to better repre-
sent a product family’s variability in
space. Most of them emphasize no-
tational improvements, new types of
features, cardinalities and feature at-
tributes, and extended relationships
to define more accurately the con-
straints and relationships between
features.

However, other research has em-
phasized variability in time (also
called binding time). Variability in
time is a property of variability mod-
els and products that defines when
features should or can be bound to
their values to realize the products’
allowed variability. Software de-
signers can employ this property to
delay design decisions. Although
this research area encompasses
fewer works than in Table 1, it be-
comes especially relevant to the dy-
namic features of modern software
that exploit run-time configuration
properties.

The evolution of complex systems
tends to focus on dynamic aspects
and on postdeployment configura-
tion and reconfiguration. So, the
binding time of SPL approaches has
also evolved from static binding (for
example, during design compilation,
linking, or assembly) to dynamic
binding, in which the variability is
fully operationalized after deploy-
ment (for example, at run time).

Other intermediate binding
modes, such as during configuration
and installation, can be perceived
as a combination of static and dy-
namic, depending on the variability
realization mechanism. For instance,

46	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

a software engineer can manually
and statically configure product op-
tions before deployment. However, if
the configuration uses either an au-
tomatic remote-update mechanism
once the product is initially deployed
or a dynamic library that automati-
cally uploads a new configuration’s
values, the binding time can be con-
sidered dynamic.

Table 2 lists the most important

binding-time approaches. It high-
lights the following four aspects
concerning the binding time and the
variability realization technique used
(which is outside this article’s scope).

First, the initial binding-time
classification provided a way to
classify binding-time modes ac-
cording to the variability realiza-
tion mechanism used.16 Claudia
Fritsch and her colleagues suggested

run-time variability but didn’t im-
plement it because they focused
largely on predeployment.

The second aspect is feature-
binding units (FBUs), in which
groups of related features bind to
their values at the same time.18 This
clearly simplifies implementing the
binding-time property and eases
implementing and managing vari-
ability, particularly for the variation

TA
B

L
E

 1 The evolution of variability models
as Feature-Oriented Domain Analysis (FODA) extensions.

Variability approach Authors Year Proposed extensions

FORM (Feature-Oriented Reuse
Method)

Kang et al.3 1998 Feature viewpoints

FeatuRSEB (Featured Reuse-Driven
Software Engineering Business)

Griss et al.4 1998 Notational changes
Variation point features and variant features

Generative Programming FM (feature
models)

Czarnecki and
Eisenecker5

2000 Redefine an alternative relationship to OR/XOR

— Hein et al.6 2000 UML-based
Secondary structure for require dependencies

— Van Gurp et al.7 2001 External features
Redefine generalization and specialization relationships

— Capilla and
Dueñas8

2001 Cardinality and quantitative range of values
Semantic relationships between features
Quality-of-service features labeled

— Riebisch et al.9 2002 Feature group
Group cardinality

GP-extended (GP stands for
generative programming)

Czarnecki et al.10 2002 Feature cardinality

Cardinality-based FM Czarnecki et al.11 2004 Feature group
Group cardinality

PLUSS (Product Line Use Case
Modeling for Systems and Software
Engineering)

Eriksson et al.12 2005 Notational changes

— Benavides et al.13 2005 Feature attributes

OVM (Orthogonal Variability Modeling) Pohl et al.14 2005 Graphical notation for variability of a software product line
Internal and external variation points
Traceability between variability and software artifacts

CVL (Common Variability Language) Haugen et al.15 2008 Different kinds of variation points
Language for expressing constraints

	 MAY/JUNE 2015 | IEEE SOFTWARE � 47

points. This approach also facilitates
the understanding of when features
are activated or tracked for their de-
pendencies and of the consistency of
features in the same binding unit.

The third aspect is the realization
of the variability at run-time binding
modes as a postdeployment binding
time.19 Although this approach in-
troduces implementation complex-
ity, it eases management and evolu-
tion of the variability for unforeseen
scenarios.

The final aspect suggests a de-
tailed taxonomy for all binding-time
modes and how to make transitions
between binding times, which are
needed for critical systems.20

Technical Practice Areas
for Software Variability
A significant amount of variability
research and practice deals with the
representational aspects of variabil-
ity in space and time. So, the follow-
ing five practice areas are suitable for
variability management.21

The first is requirements vari-
ability. Requirements are the en-
try level for expressing variability
concerns. Requirements can vary
from business-related requirements,
to quality requirements, to techni-
cal requirements describing prod-
uct properties. Little research has
investigated software requirements
variability—most solutions for mod-
eling and managing variability con-
centrate on architecture and compo-
nents. So, requirements variability is
expressed only in terms of common
requirements for the entire product
line or requirements describing the
variability within a specific product
and the product’s options for differ-
ent customers’ needs. Many software
companies prefer to express product
capabilities in terms of “features”
rather than “requirements,” which is

closer to how designers understand
and represent variability.

The second practice area is archi-
tecture variability. Because variabil-
ity is reflected primarily in the archi-
tecture, this is our first practice area
in which software variability must be
represented alongside architectural
artifacts.22 However, current archi-
tecture modeling notations’ lack of
expressiveness makes it difficult to
integrate current variability nota-
tion into software architecture de-
scriptions. Also, this duality of dif-
ferent representation techniques and
the lack of supporting tools has been
a constant for many years and is a
nightmare for software architects.
So, variability management becomes
a decision-oriented problem that can
hardly be represented in the soft-
ware architecture in a standardized
way because variation points and
variants lack explicit representation
mechanisms in current architecture-
modeling notations. Another factor
complicating variability manage-
ment in architecture is the cascading
effect of decisions when variability
models affect different architectural
layers and, thereby, how the variants

selected in upper layers are resolved
at the implementation level.

The third practice area is com-
ponent development variability. At
the implementation level, variability
must be implemented and realized in
both reusable components and prod-
ucts. The decisions for selecting vari-
ants from design to implementation
time must have a direct correspon-
dence at the implementation level.
However, the postdeployment selec-
tion of variants complicates the real-
ization of variability. In that process,
run-time concerns enable the selec-
tion of run-time binding modes be-
cause products can be reconfigured
dynamically several times. The run-
time realization of variability de-
mands new mechanisms that allow
the selection of variants and their
options dynamically at any time.

The fourth practice area is run-
time variability. Both research-
ers and practitioners tend to treat
postdeployment variability, par-
ticularly run-time variability, dif-
ferently from predeployment vari-
ability.20 Research has shown that
variation points tend to move to
later and later binding times.20 So,

TA
B

L
E

 2 Binding-time approaches.

Binding-time
approach Authors Year Proposed FODA extension

— Fritsch et
al.16

2002 Binding-time classification

Variability at any
time

Goedicke et
al.17

2004 Run-time variation points

FBU (feature-
binding units)

Lee and
Muthig18

2008 Feature-binding units

Variants on
the fly

Helleboogh
et al.19

2009 Variability at run-time binding
modes

— Bosch and
Capilla20

2012 Run-time-binding-mode taxonomy
Multiple binding times
Transitions between binding modes

48 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

many variation points that cur-
rently are bound before deployment
will eventually become run-time
variation points. Designing varia-
tion points such that the variability
mechanism, which determines the
binding time, can be easily replaced
during system implementation is
particularly important.

The � nal practice area, as the pre-
vious paragraph illustrates, is the
evolution of variability. Variation
points tend to be extended with vari-
ants later in the lifecycle, the binding
tends to occur later, permanent bind-
ing tends to be replaced with more
� exible alternatives, and so on. This
requires replacing the variability
mechanism, which is challenging in
mature systems. In addition, main-
taining variability is a challenge in
that the number of variation points
tends to increase because obso-
lete variation points often aren’t re-
moved. This leads to an increasingly
complex system or platform, which
affects the R&D organization’s pro-
ductivity and can decrease quality.

These are the most relevant tech-
nical areas in which variability must
be represented in the different soft-
ware artifacts. However, the man-
agement side of the problem, in
which hundreds of variants must be

captured, visualized, and modi� ed,
still becomes challenging for compa-
nies. This is because many of them
lack full tool support for the devel-
opment chain and use their own
tools. Krzysztof Czarnecki and his
colleagues summarized variability-
modeling approaches understood
as decision models and highlighted
variability’s dimensions.23 Today,
research on variability toolsets, lan-
guages, and frameworks in academia
and industry is attempting to solve
the variability management prob-
lem, including through automatic
constraint solving. Examples of such
research include FAMA (Feature
Model Analyzer), FAMILIAR (Fea-
ture Model Script Language for Ma-
nipulation and Automatic Reason-
ing), Clafer (class, feature, reference),
pure::variants, PLUM (Product Line
Uni� ed Modeller), and Gears.

An Industrial Perspective
Software variability is well recog-
nized and supported in companies
that have adopted an SPL approach
to deliver their product portfolio
faster and to maximize reuse. In-
dustry has used very large feature
models in successful product lines.24

A recent study surveyed variability-
modeling practice in companies in

different countries.25 Besides the or-
ganizational aspects demanded by
an SPL approach, product con� gu-
ration was the primary concern for
variability modeling, whereas vari-
ability scoping was perceived as rel-
evant for marketing purposes.

The survey also reported on
variability notations for different
 domain-speci� c needs. Similarly, the
companies were using a variety of
tools with varying market penetra-
tion. Companies employing an SPL
approach preferred commercial tools
such as pure::variants, GEARS, and
PLUM because those tools resulted
from research that had been carried
out for years. The heterogeneity of
notations and tools shows that in-
dustry hasn’t yet solved the variabil-
ity management problem and contin-
ues to experiment with solutions and
approaches. The lack of full integra-
tion of variability modeling into the
development chain hampers broader,
ef� cient use of variability in existing
software production methods.

Figure 1 summarizes the issues
most relevant to software variabil-
ity in industry. It doesn’t include the
testing of variability models, which
affects both product development
and the checking of changes to con-
straints during product evolution.

Current and
Future Trends
Companies from such varied do-
mains as consumer electronics, the
automotive sector, energy, telecom-
munications, and aviation have been
investing signi� cant effort incorpo-
rating software variability into their
product line approaches. Increasing
customer demand for con� gurable
products, often after deployment,
and the need for self-adaptive vari-
ants that realize run-time selec-
tion of a system’s options have led

Systems and
software variability

Technical areas
Requirements
Architecture
Components

Evolution and
postdeployment activities
Run-time concerns

Business concerns
Variability scoping
Variability-driven evolution

Organization issues
Variability management
Con�guration management

FIGURE 1. Aspects of variability management in industry. The diagram doesn’t include

the testing of variability models, which affects both product development and the

checking of changes to constraints during product evolution.

	 MAY/JUNE 2015 | IEEE SOFTWARE � 49

and provide a smooth transition be-
tween binding times. This is the
case in which, for instance, a system
might go from a normal operational
mode to a maintenance mode, as the
system’s options are reconfigured and
then redeployed dynamically.

Finally, variability modeling has
adapted to new challenges in which
static feature models must incorpo-
rate contextual information. In some
cases, feature models employ context
features (using context information)
to model system variability. In other
cases, they describe how context fea-
tures interact (that is, collaborative
features). So, context features must
be identified through context vari-
ability analysis and captured in fea-
ture models.28 These and other issues
must be tackled and supported by
software variability.

Table 3 summarizes the trends in
software variability and typical ap-
plication areas or systems in which it
can be used.

Future research in systems and
software variability should address
the following four topics.

The first is variability represen-
tation techniques. A neutral tech-
nique would ease the representation
of variants and variation points in
architecture. In addition, there are
different approaches to and mod-
els for representing variability (for
example, the Common Variability
Language and Orthogonal Vari-
ability Modeling). Progress could
accelerate if the community formed

a consensus on describing variabil-
ity models.

The second topic is the visualiza-
tion and management of large vari-
ability models. Current tools lack
adequate mechanisms to visual-
ize variability models for different

stakeholders, thus making variabil-
ity harder to manage. Moreover, SPL
practitioners should provide ways to
manage large variability models, from
explicit representation of variants and
variation points to configuration and
realization issues, particularly for re-
configuring variants at any time.

The third topic is constraint man-
agement. Constraints often create a
nightmare for software designers be-
cause they crosscut feature models,
and the resolution of valid feature
models becomes computationally
complex. We need mechanisms that
can model feature constraints and
ease their “machine processability,”
particularly for constraints that could
be added and checked dynamically.

The final topic is postdeployment
reconfiguration. As systems become
increasingly dynamic, adaptive, and
reconfigurable at any time, adap-
tation managers, combined with
dynamic-variability mechanisms, will
provide enhanced support to manage
variants and constraints. They’ll also
provide improved postdeployment
reconfiguration.

In This Issue
When preparing the special issue,
we were committed to selecting

to requirements that conventional
product lines and current variability
mechanisms can’t address. Compa-
nies that extensively use variability
mechanisms and tools to manage
hundreds of variants and support
the evolution of static and dynamic
product reconfigurations still lack
powerful-enough solutions for man-
aging the variability dynamically.

Other problems for variability
management pertain to visualiz-
ing large variability models. Cur-
rent commercial tools offer limited
support for advanced visualization
mechanisms to filter out the variabil-
ity of individual engineering units.
This leaves product line engineers
with full variability models that are
difficult to understand and manage.

Modeling and managing variabil-
ity are also complicated by a pleth-
ora of product constraints that cre-
ate a disruptive view of the feature
model. In such views, crosscutting
constraints add confusion to the vi-
sualization of feature variants and
variation points. To date, the hun-
dreds of constraints used to delimit
the scope of allowed products are
managed by SAT (satisfiability) solv-
ers that can automatically resolve
the variability model’s consistency
and validity. However, the resolu-
tion of these constraints often occurs
offline, whereas many self-adaptive
and run-time reconfigurable systems
demand the means to resolve and
change the constraints dynamically.

Consequently, the emerging
paradigms of dynamic SPLs26 and
dynamic-variability mechanisms27
constitute attempts to manage vari-
ability after system deployment and,
in some cases, at execution time. Fur-
thermore, some systems demand sup-
porting different operational modes
in which variants could be selected at
run time to modify system behavior

We need mechanisms that can
model feature constraints and ease

their “machine processability.”

50	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

high-quality articles that address
different topics and trends of soft-
ware variability management. Here
we provide an overview of the se-
lected articles.

In “Run-Time Variability for
Context-Aware Smart Work-
flows,” Aitor Murguzur and his
colleagues describe LateVa (Late
Variability for Context-Aware
Smart Workflows), a framework
for modeling and managing run-
time variability in workflow sys-
tems. Their prototype provided
run-time configuration of features
to adapt automated-warehouse
workflows to the current context
(the workflow rate, types of sen-
sors engaged, and physical proper-
ties of the boxes being moved).

In “A Reference Architecture and
Knowledge-Based Structures for
Smart Manufacturing Networks,”
Michael Papazoglou and his col-
leagues propose a Manufacturing
Reference Architecture (MRA). The
MRA supports demand-driven, col-
laborative manufacturing; a flex-
ible production chain; and prod-
uct customization. It is targeted at
the emerging paradigm of smart
manufacturing networks, adopt-
ing a marketplace-based approach.
It comprises a logical organiza-
tion of common software modules,
and guidance for its extension to
domain- or industry-shared plat-
forms. The MRA also uses knowl-
edge representation techniques to
capture and share manufacturing

information between phases and
vendors, in the form of “blueprints.”
The authors illustrate their approach
with an example from the automo-
tive sector.

T echniques that originated in
SPL development, including
feature and variability mod-

eling, are being applied to several
of today’s emerging cyber-physical-
systems domains, including smart
houses, logistics, smart manufac-
turing, and a plethora of smart and
adaptive systems. The evolution of
variability modeling and manage-
ment techniques must incorporate
new requirements to model the vari-
ability of modern systems with spe-
cial run-time concerns. So, we’ve
summarized here recent trends in
software variability that provide op-
portunities for R&D activities. The
proliferation of systems that demand
postdeployment and reconfiguration
tasks at any time brings new chal-
lenges for conventional variability
management approaches and tools
that SPL engineers must address.

References
	 1.	 K.C. Kang et al., Feature-Oriented Do-

main Analysis (FODA) Feasibility Study,
tech report CMU/SEI-90-TR-21, Software
Eng. Inst., Carnegie Mellon Univ., 1990.

	 2.	 K.C. Kang and H. Lee, “Variability Mod-
eling,” Systems and Software Variability
Management: Concepts, Tools, and Ex-
periences, R. Capilla et al., eds., Springer,
2013, pp. 25–42.

	 3.	 K.C. Kang et al., “FORM: A Feature-
Oriented Reuse Method with Domain-
Specific Reference Architectures,”
Annals of Software Eng., vol. 5, 1998,
pp. 143–168.

	 4.	 M.L. Griss, J. Favaro, and M. d’Alessandro,
“Integrating Feature Modeling with the
RSEB,” Proc. 5th Int’l Conf. Software
Reuse, 1998, pp. 76–85.

	 5.	 K. Czarnecki and U.W. Eisenecker, Gen-
erative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

TA
B

L
E

 3 Software variability trends and techniques
for different application areas and systems.

Software variability
trend

Techniques and tools
used or under research

Application areas
and systems

Run-time concerns Dynamic variability
Multiple binding times

Self-adaptive and
autonomous systems (for
example, robots, smart cities,
and smart cars)
Workflow and process
reconfiguration
Real-time critical systems
(for example, power plants)

Visualization Fish-eye views
Filters
Zooming
Focus and context
Cross-tree constraint
views

Variability management tools

Run-time constraint
checking

Online SAT (satisfiability)
solvers
Adaptation managers
Complex constraints

Variability management tools
Run-time self-adaptive
systems (for example,
autonomous robots)

Context and
collaborative features

Context variability Autonomous systems
Drones and swarm systems
Complex and critical
systems-of-systems
(for example, airport
management systems)

MAY/JUNE 2015 | IEEE SOFTWARE 51

 6. A. Hein, M. Schlick, and R. Vinga-
Martins, “Applying Feature Models in In-
dustrial Settings,” Proc. 1st Int’l Software
Product Line Conf., 2000, pp. 47–70.

 7. J. van Gurp, J. Bosch, and M. Svahnberg,
“On the Notion of Variability in Software
Product Lines,” Proc. 2001 Working
IEEE/IFIP Conf. Software Architecture,
2001, pp. 45–54.

 8. R. Capilla and J.C. Dueñas, “Modelling
Variability with Features in Distributed
Architectures,” Software Product-Family
Engineering, LNCS 2290, Springer, 2001,
pp. 319–329.

 9. M. Riebisch et al., “Extending Feature
Diagrams with UML Multiplicities,” Proc.
6th World Conf. Integrated Design &
Process Technology, 2002, pp. 1–7.

 10. K. Czarnecki et al., “Generative Pro-
gramming for Embedded Software: An
Industrial Experience Report,” Generative
Programming and Component Engineer-
ing, LNCS 2487, Springer, 2002, pp.
156–172.

 11. K. Czarnecki, S. Helsen, and U. Eiseneck-
er, “Staged Con� guration Using Feature
Models,” Software Product Lines, LNCS
3154, Springer, 2004, pp. 266–283.

 12. M. Eriksson, J. Börstler, and K. Borg,
“The PLUSS Approach—Domain Model-
ing with Features, Use Cases and Use Case
Realizations,” Software Product Lines,
LNCS 3714, Springer, 2005, pp. 33–44.

 13. D. Benavides, P. Trinidad, and A. Ruiz-
Cortés, “Automated Reasoning on Feature
Models,” Advanced Information Systems
Engineering, LNCS 3520, Springer, 2005,
pp. 491–503.

 14. K. Pohl, G. Böckle, and F.J. van der Lin-
den, Software Product Line Engineering:
Foundations, Principles and Techniques,
Springer, 2005.

 15. O. Haugen et al., “Adding Standardized
Variability to Domain Speci� c Lan-
guages,” Proc. 12th Int’l Software Product
Line Conf. (SPLC 08), 2008, pp. 139–148.

 16. C. Fritsch et al., “Evaluating Variability
Implementation Mechanisms,” Proc. Int’l
Workshop Product Line Eng. (PLEES),
2002, pp. 59–64.

 17. M. Goedicke, C. Köllmann, and U. Zdun,
“Designing Runtime Variation Points in
Product Line Architectures: Three Cases,”
Science of Computer Programming, vol.
53, no. 3, 2004, pp. 353–380.

 18. J. Lee and D. Muthig, “Feature-Oriented
Analysis and Speci� cation of Dynamic
Product Recon� guration,” High Con� -
dence Software Reuse in Large Systems,
LNCS 5030, Springer, 2008, pp. 154–165.

 19. D. Helleboogh et al., “Adding Variants
on-the-Fly: Modeling Meta-variability in
Dynamic Software Product Lines,” Proc.
3rd Int’l Workshop Dynamic Software
Product Lines (DSPL 09), 2009, pp. 18–27.

 20. J. Bosch and R. Capilla, “Dynamic Vari-
ability in Software-Intensive Embedded

System Families,” IEEE Software, vol. 45,
no. 10, 2012, pp. 28–35.

 21. R. Capilla, J. Bosch, and K.C. Kang,
Systems and Software Variability Manage-
ment: Concepts, Tools and Experiences,
Springer, 2013.

 22. M. Galster et al., “Variability in Software
Architecture: Current Practice and Chal-
lenges,” ACM SIGSOFT Software Eng.
Notes, vol. 36, no. 5, 2011, pp. 30–32.

 23. K. Czarnecki et al., “Cool Features and
Tough Decisions: A Comparison of Vari-
ability Modeling Approaches,” Proc. 6th
Int’l Workshop Variability Modeling of
Software-Intensive Systems (VaMoS 12),
2012, pp. 173–182.

 24. F. van der Linden, K. Schmid, and E. Rom-
mes, Software Product Lines in Action,
Springer, 2007.

 25. T. Berger et al., “A Survey of Variability
Modeling in Industrial Practice,” Proc. 7th
Int’l Workshop Variability Modeling of
Software-Intensive Systems (VaMoS 13),
2013, article 7.

JAN BOSCH is a professor of software engineering at the
Chalmers University of Technology. His research interests are
software architecture assessment, design, and representation;
software product lines; design erosion; component-oriented
software engineering; and object-oriented frameworks and de-
sign patterns. Bosch received a PhD in computer science from
Lund University. Contact him at jan@jan.bosch.com.

RAFAEL CAPILLA is an associate professor of computer
science at Rey Juan Carlos University. His research interests
are software architecture, software-product-line engineering,
software variability management, and technical debt. Capilla
received a PhD in computer science from Rey Juan Carlos
University. Contact him at rafael.capilla@urjc.es.

RICH HILLIARD is a software systems architect, consulting
with public- and private-sector clients. He’s the project editor of
ISO/IEC/IEEE 42010, Systems and software engineering—
Architecture description (the international adoption of IEEE Std.
1471-2000). Hilliard is a visiting research scientist at MIT’s
Experimental Study Group . He’s the vice-chair of IFIP Working
Group 2.10 on Software Architecture and a member of the Free
Software Foundation and IEEE Computer Society. Contact him
at richh@mit.edu; http://softsysarchitect.net.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 26. M. Hinchey, S. Park, and K. Schmid,
“Building Dynamic Software Product
Lines,” Computer, vol. 45, no. 10, 2012,
pp. 22–26.

 27. R. Capilla et al., “An Overview of Dy-
namic Software Product Line Architec-
tures and Techniques: Observations from
Research and Industry,” J. Systems and
Software, May 2014, pp. 3–23.

 28. H. Hartmann and T. Trew, “Using Fea-
ture Diagrams with Context Variability
to Model Multiple Product Lines for
Software Supply Chains,” Proc. 12th Int’l
Software Product Line Conf. (SPLC 08),
2008, pp. 12–21.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

s3gei.indd 51 4/2/15 3:19 PM

