
94 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Robert Blumen
Symphony Commerce
robert@robertblumen.com

SOFTWARE
ENGINEERING

Technical Debt
Eberhard Wolff and Sven Johann

IN THIS ISSUE, we deviate from our
usual format of one host interviewing
one guest. Software Engineering Radio
episode 224 features a conversation be-
tween our longest-tenured host, Eberhard
Wolff, and our newest host, Sven Johann
(although Sven was not yet a host when
the show was recorded). The episode was
inspired by their InfoQ article “Manag-
ing Technical Debt” (www.infoq.com
/articles/managing-technical-debt).

Portions of the episode not featured
in this column because of space include
sources of technical debt, technical debt
as a retrospective quality, how to ana-
lyze the costs and bene� ts of paying
down debt, and accepting technical debt
on a permanent basis. Besides listening
to the entire episode, I also recommend
reading the InfoQ article for a more de-
tailed discussion. You can download
the full episode at www.se-radio.net.
—Robert Blumen

Eberhard Wolff (EW): Technical debt
is obviously connected to the quality of
software. There are actually two types
of quality. One type is external quality,
which is perceived by a user or customer.
That might be the performance, secu-
rity, scalability, whether the software
is stable, and so on. It can be measured
and experienced by users. Because it’s a
feature of the product, it should be man-
aged by the product owners because they
are interested in the quality and how the

software will be perceived and used by
the user.

The more complex part is that there’s
also internal quality. Internal quality
can only be perceived by developers.
It’s anything that makes extending and
maintaining the code easier or harder.
That could be things like tests that are
there or are missing—if there are more
tests, the code is easier to change. Inter-
nal quality can be about architectural
styles or problems, or it can be about
coding issues—whether the code is too
complex or too easy.

The hard thing about software devel-
opment is that internal quality can’t re-
ally be perceived by anyone except tech-
nical people. If you are not a technical
guy, it’s hard to see what this internal
quality really is and how it in� uences the
development process.

Sven Johann (SJ): You could say
“technical debt” is a metaphor to
describe not-quite-right code. The
technical- debt metaphor helps us com-
municate that if we want to build some-
thing on top of not-quite-right code,
it will be expensive to do something
on this code base later on. So, it takes
longer to implement a new feature on a
not-so-good code base.

Also, internal quality sooner or later
becomes external quality. If we have a
bad code base and then get more and
more bugs, it will eventually bubble

s4sof.indd 94 6/4/15 1:33 PM

SOFTWARE ENGINEERING

JULY/AUGUST 2015 | IEEE SOFTWARE 95

up to the stakeholders of a project.
Technical debt is actually not a de-
veloper problem; it’s a company-
wide problem. If you have too much
technical debt, in an extreme case,
whole engineering departments can
stand still.

EW: You could argue that techni-
cal debt is actually one of the key
points to successful software proj-
ects. The term was coined by Ward
Cunningham in 1992; he said that
shipping � rst-time code is like going
into debt. A little debt speeds up de-
velopment so long as it’s paid back
promptly with a rewrite. The danger
occurs when the debt isn’t repaid.
Every minute spent on not-quite-
right code counts as interest on that
debt. Entire engineering organiza-
tions can be brought to a standstill
under the debt load of an unconsoli-
dated implementation.

This clearly says that the
technical- debt metaphor is closely
related to � nancial debt. It’s about
shipping something quickly and go-
ing into debt. Then you need to re-
pay the debt by increasing the qual-
ity later. If you don’t do that, you
will have to pay interest rates be-
cause your productivity goes down.

This is a good metaphor to use
when talking to management, be-
cause they should be familiar with � -
nancial terms and you can tell them
this is just like getting a loan at the
bank. You have some bene� t for some
time, but then at one point you need
to repay it … plus the interest rate.

SJ: A while ago I had a discussion
with Ward Cunningham about tech-
nical debt, and he said technical debt
is actually a strategy because we can
quickly reach a business goal by go-
ing into debt. For instance, it’s much
more important to bring something

on the market very fast than having
perfect code and being late. Eric Ries
describes this in his book The Lean
Startup (Crown Business, 2011).
When he worked at startups, he
was always so happy that he wrote
perfect code, but in the end nobody

used it. So it’s better to build some-
thing quickly and bring it in front of
the user to see if it’s actually useful
for anybody. If it’s, we can pay back
the technical debt. If we create per-
fect code for functionality and don’t
know if it’s useful or not, it’s a waste
of time.

Henrik Kniberg from Spotify
wrote a blog post describing this.
We see perfect code as a waste if we
don’t know that the functionality it
creates is really useful. [Developers]
come up with the functionality ex-
tremely quickly, but it’s not in very
good shape. They bring it in front of
the user, and if they see that the user
likes it and they want to build on
top of that functionality, they refac-
tor it and make it nice. We see these
strategies over and over again. Twit-
ter seems to rewrite its system all the
time. Amazon was also a very differ-
ent system in the beginning.

EW: When I talk to software archi-
tects, I give them exercises and they
often come up with solutions that
have scalability in mind. They think
scalability is their main concern,
while in fact they should probably

focus on time to market because oth-
erwise they will not reach the point
with the software when they would
need the scalability, because then the
company would already be bankrupt
or the business case would be gone.

So as you see, [technical debt]

isn’t necessarily always a bad thing.
Still, you need to deal with techni-
cal debt somehow. One of the great
ideas I came across at one point was
by Eric Evans, who wrote Domain-
Driven Design (Addison-Wesley Pro-
fessional, 2003). There is a part of
this design that basically everyone
knows about, the ubiquitous lan-
guage and repositories. But there is a
different part of that book that not
too many people seem to have read.
That’s about strategic design and de-
sign on a more coarse-grained level.

[Evans] says that you can’t have
the same quality throughout the
whole system. You will have good
and bad developers on your team.
Even if you have a very, very good
team, there will still be better and
worse developers. What can you do?
You can leave it to chance which
parts have better and worse quality,
or you can make a conscious deci-
sion. Which parts of the system are
really important concerning change-
ability? You might get that informa-
tion from historical data, or you can
think about it from a business per-
spective. “Which parts, if we can
change them quickly, will give us a

Technical debt is actually a strategy
because we can quickly reach a
business goal by going into debt.

s4sof.indd 95 6/4/15 1:33 PM

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

SOFTWARE ENGINEERING

competitive edge?” For example, the
way you do your shipping is very im-
portant. In that case, the part of the
system that does the shipping should
be of high internal quality.

Let’s say you have a really nice
domain model that’s highly sophisti-
cated, and the code is of quite high
quality. Then you have a different
part of the system—for example, the
part that deals with the customer—
and that’s just standard software
that has low quality and a pretty aw-
ful domain model. To make sure this
awful domain model doesn’t leak
into your valuable shipping system,
you build in an anticorruption layer
that separates those two models and
translates between them.

You decide which parts are im-
portant, and you care about those
and have your best developers work-
ing on them. You monitor the qual-

ity closely. There are other parts
where you might even use standard
software that you bought, or you
can just stick to your legacy system.
I think that’s an interesting way of
strategically developing the quality
of a rather complex system.

The next question is whether it’s
realistic to have debt-free systems.

SJ: Is it possible to have a technical-
debt-free system? I read quite of-
ten about “no more technical debt”
and “how to be debt-free in 10 easy
steps.” I think we should just accept
that there will always be technical
debt. Even if you have a debt-free
system, how do you achieve it? You
probably have to invest a lot of time
and money, and that’sn’t necessarily
tied to the success of the project.

EW: The key point to take away here

is that the original implementations
for Amazon and Twitter were hugely
successful, but there was quite a lot
of technical debt. Technical debt
isn’t tied to the commercial success
of a project at all. You can have an
enormously successful project or
business that’s based on a piece of
software that’s full of problems.
Then you can do a rewrite.

Extreme programming came up
with the idea to set the quality dial
to the maximum and have no com-
promises about technical debt at all.
That might be a bad idea, because
then you invest a lot of resources,
money, and effort in maintaining
high quality even though it’s not
necessary. It might not even in� u-
ence the commercial success at all,
because it’s something a user doesn’t
even see.

So what can we actually do about
technical debt? One of the ways you
can deal with technical debt is to
create a buffer task per release. You
could say, let’s allocate 10 percent of
the time to the team, and have the
team work on technical things that
they think would improve things.
You can even spend more of your
budget on technical debt. You could
have technical releases that just im-
prove the code base. That means the
effort invested in handling techni-
cal debt isn’t evenly distributed, like
it would be with those buffer tasks
that have 10 percent per sprint.

Let’s say we want to change
the registration process. When we
change it, we improve the software
quality to make implementing it eas-
ier. That way, you invest the budget
for improving quality in those ar-
eas of the code where the changes
are actually made. It’s also factored
into the use cases. So it’s something
that can be decided by management.
They can say, “I don’t want to do

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
• 222—Apache Storm project creator Nathan Marz joins Jeff Meyerson

in a discussion about a tool that brings Hadoop’s processing model to
streaming data.

• 223—Joram Barrez speaks with Josh Long about the Activiti business-
process-management platform and building process-driven applications.

• 225—Systems performance guru Brandon Gregg discusses performance
tuning, measurement, and visualization in the cloud with Robert Blumen.

UPCOMING EPISODES
• Robert Blumen sits down with Fangjin Yang for an overview of OLAP (on-

line analytical processing) and the Druid real-time analytical data store.
• Barry O’Reilly explains how to apply lean and agile principles in software

organizations to achieve velocity and scale.
• Tobias Kaatz speaks with Jonathan Groß about the specific challenges

software developers face in the scientific world.

s4sof.indd 96 6/4/15 1:33 PM

SOFTWARE ENGINEERING

JULY/AUGUST 2015 | IEEE SOFTWARE

this story—it’s so awfully expensive
because the quality is so low.”

However, at the end of the day,
quality should be a business deci-
sion. It’s about prioritizing quality
over features. If you improve qual-
ity, it will pay [you] back in the long
term. However, if you really need to
get this feature done, because oth-
erwise your business case is gone or
you have other severe business con-
sequences, then the quality doesn’t
really matter. I think the hard thing
about handling technical debt is to
enable the business to decide which
part should have higher quality and
where to invest effort.

Communication with manage-
ment is also the core of the metaphor
of technical debt; that’s why it was
introduced in the � rst place. To some
extent it’s also about trust. If the de-
velopers know how to handle quality
and how to keep it up, you can have
them decide where quality should
be improved. Otherwise, you would
need to basically beg for a budget to
invest in quality. That might be very
cumbersome and hard. So I think it’s

about trust but it’s also about inves-
tigating where you can get a payoff.

SJ: I think we have one important
point left. Frank Buschmann, who
is widely known for the pattern-
oriented software architecture,
asked, “To pay or not to pay the
technical debt?” He gave three an-
swers. Point one is debt repayment.
We have a very bad piece of code or
component of a system, and we de-
cide to completely refactor or replace
the code with a stable, good design.
You should only do that if the code
is really bad and you know you will
often have to build new functional-
ity on top of that in the future.

The second point he proposes is
debt conversion. You have a compo-
nent or part of the system that has a
very high technical debt, but replac-
ing it’s not a solution. For instance,
you have a 30-year-old legacy appli-
cation—you can’t just throw it away
because it’s too expensive and risky.
But you can try to transform the sys-
tem to a good but not perfect solu-
tion, which has a lower interest rate.

It’s still not perfect, but it’s much
better than the old system.

The last one, which I hear quite of-
ten and think is a valid point, is that
we must accept technical debt at some
point. We just pay the interest. We
know the code isn’t very good, but we
live with it. The cost of refactoring a
not-so-good code base to a good one
is more expensive than working with
the not-quite-right code. I think that’s
something we always have to keep
in mind. We have to constantly ask
ourselves, “Should we really make it
good? Or does that debt cost more
than just living with it?”

EBERHARD WOLFF is a Fellow at innoQ in Ger-
many. Contact him at eberhard.wolff@innoq.com.

SVEN JOHANN is a software developer at Tri-
fork Amsterdam. Contact him at sven.johann77@
gmail.com.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave., 17th
Floor, New York, NY 10016-5997. IEEE Computer Society Publica-
tions Of� ce: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1
714 821 8380; fax +1 714 821 4010. IEEE Computer Society head-
quarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscribe to
IEEE Software by visiting www.computer.org/software.

Postmaster: Send undelivered copies and address changes to IEEE
Software, Membership Processing Dept., IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid at
New York, NY, and at additional mailing of� ces. Canadian GST
#125634188. Canada Post Publications Mail Agreement Number
40013885. Return undeliverable Canadian addresses to PO Box
122, Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is
not made for pro� t; 2) includes this notice and a full citation to the
original work on the � rst page of the copy; and 3) does not imply
IEEE endorsement of any third-party products or services. Authors

and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permis-
sion, provided that the IEEE copyright notice and a full citation to
the original work appear on the � rst screen of the posted copy. An
accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version
with copyediting, proofreading, and formatting added by IEEE. For
more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission
to reprint/republish this material for commercial, advertising, or
promotional purposes or for creating new collective works for resale
or redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Of� ce, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2015 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy for private use of
patrons, provided the per-copy fee indicated in the code at the bot-
tom of the � rst page is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

s4sof.indd 97 6/4/15 1:33 PM

