
Robotic Mobile Testing for Truly
Black Box Automation
Ke Mao, Mark Harman, Yue Jia
CREST Centre, University College London, UK.

R
obots are widely used for many repetitive tasks. Why not soft-
ware testing? Robotic Testing could give testers a completely
new form of ‘blackbox’ testing, that is inherently more black box

than anything witnessed previously. This article provides a compari-
son between the state-of-the-art simulated-based mobile test automa-
tion and our proposed robotic mobile testing. We give with scenarios
for which robotic testing is beneficial (even essential), introducing a
robotic mobile device test generator, Axiz. We illustrate the applica-
tion of Axiz to a popular Google Calculator app.

Automated Robotic Mobile Testing

We advocate a Ropbotic Tetsing appropach to address the profound shift we are
currently witnessing, from desktop to mobile computation1. This is a trend which
is projected to gather pace2, accelerated by a concomitant shift from desktop
to mobile ownership. Automated software testing is needed more than ever in
this emerging mobile world, yet we may need to rethink some of the principles
of software testing, even fundamentals, such as what it means to be truly ‘black
box’ when testing.

Mobile devices enable rich user interaction inputs such as gestures via touch
screens and various signals via sensors (GPS, accelerometer, barometer, NFC, etc.).

1“Global PC sales fall to eight-year low”, http://www.statista.com/chart/4231/global-
pc-shipments; “Global smartphone shipments forecast from 2010 to 2019”, http://www.

statista.com/statistics/263441/global-smartphoneshipments-forecast
2“Gartner Announcement”, http://www.gartner.com/newsroom/id/3187134

1

http://www.statista.com/chart/4231/global-pc-shipments
http://www.statista.com/chart/4231/global-pc-shipments
http://www.statista.com/statistics/263441/global-smartphoneshipments-forecast
http://www.statista.com/statistics/263441/global-smartphoneshipments-forecast
http://www.gartner.com/newsroom/id/3187134

They serve a wide range of users in heterogeneous and dynamic contexts such as
geographical locations and networking infrastructures. Complex interactions with
various sensors under a wide range of testing contexts are required, to adequately
explore and uncover bugs.

A recent survey work on mobile app development indicated that current
practical mobile app testing relies heavily on manual testing [1], with its inherent
inefficiencies and biases. There are frameworks, such as Appium3, Robotium4,
UIAutomator5 that can partly support automatic test execution, but they rely
on human test script design, thereby creating a bottleneck.

Fortunately, there have been many recent advances in automated Android
testing research [2, 3, 4, 5]. However, all of these techniques use intrusive (fully,
or partly white box) approaches to execute the generated test cases. They also
assume that testing tools will enjoy developer-level permissions; an assumption
that does not always hold.

Many such techniques need to modify the app code or even the mobile operating
system, while even the most ‘black box’ of approaches rely on communicating
with the app under test through a test harness. This is not ‘truly’ black box,
because it relies on machine-to-machine interface between test harness and app
under test.

A truly black box approach would make no assumptions, relying only upon the
device-level cyber-physical interface between human and the app. Testing at this
level of abstraction is not only truly black box, but it makes fewer assumptions,
and more closely emulates the experience of the real user. It may therefore yield
more realistic test cases. Furthermore, such truly blackbox approach to testing
is inherently device independent; a considerable benefit in the world with more
than 2,000 different devices under test6.

A Manifesto for Robotic Testing

We believe that handheld devices require a rethink of what it means to be black
box when testing. The user experience of handheld devices is so different to
that for desktop applications, that existing ‘machine-to-machine’ black box test
generation lacks the realism, usage-context sensitivity and cross-patform flexibility
needed to quickly and cheaply generate actionable test cases.

This section sets out a manifesto for Robotic Testing, in which the execution of
the generated test cases is performed in a truly black box (entirely non-intrusive)

3Appium: Automation for iOS and Android apps. http://appium.io
4Robotium: User scenario testing for Android. http://github.com/RobotiumTech/robotium
5UIAutomator. http://developer.android.com/tools/testingsupport-library
6https://code.facebook.com/posts/300815046928882/the-mobile-device-lab-at-the-

prineville-data-center

2

http://appium.io
http://github.com/RobotiumTech/robotium
http://developer.android.com/tools/testingsupport-library
https://code.facebook.com/posts/300815046928882/the-mobile-device-lab-at-the-prineville-data-center
https://code.facebook.com/posts/300815046928882/the-mobile-device-lab-at-the-prineville-data-center

manner, using the cyber physical interface of the device, rather than machine-to-
machine communication between test two and up on the test7. Table 1 compares
manual, robotic and traditional automated testing techniques.

Realism: For Android testing, MonkeyLab [6] generates test cases based
on the app usage data. There are also several published approaches to realistic
automated test input generation for web-based systems [7]. Nevertheless, there is
little or no attention to realism. A test sequence that reveals a crash, will not be
acted upon by a developer who believes the test sequence to be unrealistic. All
automated test data generation may suffer from unrealistic tests, because due to
inadequate domain knowledge. However, there is an additional problem for the
mobile paradigm: the tests may be simply unachievable by human, for example
requiring simultaneous clicking using more than five fingers.

Device Independence: Existing white box and (claimed) blackbox auto-
mated testing require modification of the behaviour of either the app under
test or the platform or both. Even techniques that are regarded as black box,
communicate with the app though simulated signals rather than those triggered
via real sensors (e.g., touch-screen, gravity-sensor) on the mobile device.

Robotic Testing uses the same cyber-physical interface as the human user, it
is also less vulnerable to changes in the underlying platform, API interfaces and
implementation details. In a world where time-to-market is critical, the ability to
quickly deploy on different platforms is a considerable advantage.

Cost-Benefit: Human based testing is considerably expensive, yet it enjoys
a great deal of realism and device independence. By contrast, existing automated
test data generation is relatively inexpensive, relying only on computational time,
yet it lacks realism and device independence. Robotic Testing seeks the best ratio
of cost-to-benefit, and combines the best aspects of human-based testing and
existing machine-to-machine automated testing.

Although robotic technology has historically proved to be expensive, we are
currently witnessing a rapid decrease in the cost of robotic technology. Crowd-
sourcing, too, is currently reducing the cost of human-based testing [8], yet it
seems unlikely that crowdsourcing would prove to be ultimately cheaper than
Robotic Testing.

Reduced Reliance on Assumptions: Traditional automated test tech-
niques make a number of assumptions about the system under test, whereas
human-based test data generation relaies on fewer assumptions. Robotic Testing
is much closer to human-based testing in the number of assumptions made, yet its
ability to generate large numbers of test cases cheaply is much closer to existing

7The authors would like to thank Andreas Zeller, for his invited talk at the 36th CREST
Open Workshop (COW 36: crest.cs.ucl.ac.uk/cow/36/slides/COW36 Zeller.pdf), at which he
gave a playful video of a disembodied synthetic human hand, automatically interacting with a
mobile device. This was one of the inspirations for our proposal.

3

T
a
b

le
1
:
A
n
o
ve
rv
ie
w
o
f
th
e
cr
it
er
ia

to
co
n
si
d
er

w
h
en

ch
oo
si
n
g
fr
o
m

m
a
n
u
a
l,
si
m
u
la
ti
o
n
-b
a
se
d
a
n
d
ro
bo
ti
c-
ba
se
d
te
st
in
g
a
p
p
ro
a
ch
es
.

A
sp

e
c
ts

C
o
n
si
d
e
r
a
ti
o
n
s

M
a
n
u
a
l
T
e
st
in

g
A
u
to

m
a
te

d
T
e
st
in

g

S
im

u
la
te

d
In

te
r
a
c
ti
o
n

R
o
b
o
ti
c
-b

a
se

d

E
m
u
la
to

r
-b

a
se

d
D
e
v
ic
e
-b

a
se

d

T
a
rg
et

T
es
t
a
p
p
s

Y
es

Y
es

Y
es

Y
es

T
es
t
d
ev

ic
es

L
im

it
ed

N
o

L
im

it
ed

Y
es

D
ep

en
d
en

cy
P
la
tf
o
rm

su
p
p
o
rt

C
ro
ss
-p
la
tf
o
rm

P
la
tf
o
rm

-d
ep

en
d
en

t
P
la
tf
o
rm

-d
ep

en
d
en

t
C
ro
ss
-p
la
tf
o
rm

P
la
tf
o
rm

v
er
si
o
n

In
d
ep

en
d
en

t
D
ep

en
d
en

t
D
ep

en
d
en

t
In
d
ep

en
d
en

t

In
te
g
ri
ty

M
o
d
if
y
O
S

N
o
t
n
ee
d
ed

In
m
o
st

ca
se
s

In
m
o
st

ca
se
s

N
o
t
n
ee
d
ed

P
er
m
is
si
o
n

D
ev

el
o
p
er

p
ri
v
il
eg

e
N
o
t
n
ee
d
ed

N
ee
d
ed

N
ee
d
ed

N
o
t
n
ee
d
ed

C
o
st

C
o
st

H
ig
h

V
er
y
lo
w

L
o
w

M
ed

iu
m

S
ca

li
b
il
it
y

S
ca

li
b
il
it
y

V
er
y
lo
w

V
er
y
h
ig
h

H
ig
h

M
ed

iu
m

In
te
ra
ct
io
n

R
ea

li
sm

H
ig
h

V
er
y
lo
w

L
o
w

M
ed

iu
m

C
o
m
p
le
x
it
y

M
o
d
er
a
te

V
er
y
C
o
m
p
le
x

V
er
y
C
o
m
p
le
x

C
o
m
p
le
x

S
en

so
r
a
ct
iv
a
ti
o
n

U
n
co

n
tr
o
ll
ed

N
o

N
o

C
o
n
tr
o
ll
ed

P
er
fo
rm

a
n
ce

A
cc
u
ra
cy

V
a
ry

V
er
y
h
ig
h

V
er
y
h
ig
h

H
ig
h

S
p
ee
d

S
lo
w

F
a
st

F
a
st

M
o
d
er
a
te

R
el
ia
b
il
it
y

L
o
w

H
ig
h

H
ig
h

H
ig
h

U
se
r
E
x
p
er
ie
n
ce

T
es
t
im

a
g
in
g

L
im

it
ed

N
o

Y
es

Y
es

T
es
t
to
u
ch

sc
re
en

L
im

it
ed

N
o

N
o

Y
es

T
es
t
IM

U
,
N
F
C

se
n
so
rs

L
im

it
ed

N
o

N
o

Y
es

T
es
t
U
I
re
sp

o
n
se

L
im

it
ed

L
im

it
ed

Y
es

Y
es

F
u
n
ct
io
n
a
li
ty

O
ra
cl
e

H
u
m
a
n

A
u
to
m
a
te
d

A
u
to
m
a
te
d

A
u
to
m
a
te
d

In
te
rn

a
l
S
ta
te
s

N
o
t
a
cc
es
si
b
le

A
cc
es
si
b
le

A
cc
es
si
b
le

N
o
t
a
cc
es
si
b
le

T
es
t
L
B
S

Y
es

N
o

N
o

Y
es

C
o
m
p
a
ti
b
il
it
y

H
a
rd

w
a
re

Y
es

N
o

Y
es

Y
es

P
la
tf
o
rm

Y
es

L
im

it
ed

Y
es

Y
es

N
et
w
o
rk

Y
es

N
o

Y
es

Y
es

4

Robotic Test Generator

Controller

Performance
Evaluator

Realism
Evaluator

AUT
Analyser

 AUT
Evolu-
tionary
SearchRealism

Model

Robotic Test Executor

Interpretor

Object
Detector

Oracle
Comparator

Robotic
Test Cases

Test Filter

Mobile Device

State
Logger

Manipulator Camera

Figure 1: The framework of the Axiz robotic mobile testing system.

automated testing.

The Axiz Framework

Our Axiz Robotic Testing system architecture is depicted in Figure 1. The
framework contains two high-level components: the ‘robotic test generator’ (for
generating realistic test cases), and the ‘robotic test executor’ (for further execution
and filtering of the tests). The filtering stage removes tests that can be detected
to be unexecutable in a real-world setting.
Robotic test generator. The robotic test generator starts by analysing the
application under test (AUT). The extracted information of the AUT (including
app categories, static strings and APIs, etc.) is used to adjust a ‘realism model’.
The realism model uses previously-collected empirical data containing known-
realistic test cases.

Based on a series of observations of human usage, we compute a comprehensive
list of properties (e.g., delay between two adjacent events, event types and event
patterns) are calculated to capture the characteristics and properties of the
underlying the real-world test cases. The hope is that these characteristics will
capture what it is to be ‘realistic’, so that these can be used to guide and constrain
automated test data generation.

The realism model, together with the AUT, are passed into the evolutionary

5

Figure 2: Testing mobile apps with a 4-axis robotic arm.

search component for generating and evolving test cases. The source of ‘realism’
for the individuals being evolved, derives from two aspects of our approach: Firstly,
by reusing and extending realistic test cases (e.g., Robotium or Appium test
scripts), we draw on previous tests manually written by the app testers. Secondly,
by searching a solution space constrained by the realism model, we constrain
our search to generate test cases that meet the constraints identified earlier from
crowdsourced tests.

The fitness of the generated test cases is evaluated based on their performance
(such as code coverage and fault revelation) and realism as assessed by the realism
model.
Robotic test executor. The generated test case candidates are further validated
by executing them on a physical device, thereby interacting with the device in
much the same way that end-users or manual testers might do. The test executor
first translates the coded test scripts into machine-executable commands for the
robot, and executes them on a robotic arm.

The arm interacts with the mobile device non-intrusively, just as a human
would. This process requires inverse kinematics and calibration components in
order to make the manipulator act accurately. A camera is used to monitor
the mobile device states. Image data from the camera is further processed
via computer vision techniques, which perform object detection and test oracle
comparison.

The overall process data logged in the execution process is finally sent to a
test filter To determine whether the candidate test case should be filtered out.

6

Figure 3: Testing a real-world popular calculator app with Axiz9.

A Prototype Axiz Implementation

We have implemented a prototype of our Axiz system, shown in Figure 2, to
demonstrate practical current feasibility. Our implementation has been built
entirely using commodity hardware components, which are inexpensive, widely
available and interchangeable. We use 3D vision-based self-calibration approach
[9] to help calibrate and adjusting the robotic manipulator, in order to keep the
system working reliably and as input to the oracle.

More specifically, we use a 4-axis Arduino-based robotic arm as the manip-
ulator. The arm is driven by stepper motors with a position repeatability of
0.2mm. The maximum speed-of-movement for each axis ranges from 115 to 210
degrees per second (when loaded with a 200g load, a sufficient maximum for most
current mobile devices). At the end of robotic forearm, a ‘stylus pen’ is installed

7

to simulate a human’s finger-based gestures.
We use a Nexus 7 tablet as the device under test, with normal user permissions

and the official Android system (without modification) as the platform and
operating system. An external CMOS 1,080p camera is used to monitor the test
execution. We run the test generator and robot controller on a MacBook Pro
laptop with a 2.3 GHz CPU and 16G RAM.

We implemented inverse kinematics (in Python) for robotic arm control. We
implemented the object detector and oracle comparator on top of the on OpenCV
library. The test generation component implements a widely used multi-objective
genetic algorithm called NSGA-II for multi-objective search based software testing,
using our (currently state-of-the-art [5]) tool Sapienz, for generating sequences of
test events that achieve high coverage and fault revelation with minimised test
sequence length.

An Proof-of-Concept Illustrative Example

We selected the popular Google Calculator app as our sample subject, which has
5 to 10 million installs according to Google Play8. Although this is a simple app,
it is a nontrivial real-world app and therefore serves to illustrate the potential for
truly black box Robotic Testing.

To demonstrate the usefulness of Axiz, we first use Axiz’ robotic test gen-
erator to generate realistic tests, which we then execute using the Axiz robotic
manipulator. For a comparison purposes, in our demonstration, we also introduce
another Nexus 7 tablet (for which more traditional intrusive testing is permitted).
This comparator Nexus 7 is directly connected to the PC controller. We allow
the test tool for it to have developer-level privileges and permit it to perform OS
modifications.

An illustration of this process is shown in Figure 3: The interpretor component
on the PC translates the event instructions into motion specifications for Axiz’
robotic arm controller, which transforms these into joint angle instructions, based
on inverse kinematics. As shown in the screenshot, the robotic arm touches the
buttons shown in the left-hand device for robotic test execution. The oracle
comparison component ‘witnesses’ each test event; after each step of the test
execution, it captures images via the external camera and validates mobile GUI
states. A demo video of Axiz is available at: https://www.youtube.com/watch?
v=5SjDAQGloXcm which shows that Axiz was able to accurately execute each
test event specified in the generated robotic test cases and to pass all required
oracle checkpoints, faithfully maximising the abilities of our traditional machine-
to-machine ‘blackbox’ tester, Sapienz [5].

8https://play.google.com/store/apps/details?id=com.google.android.calculator

8

https://www.youtube.com/watch?v=5SjDAQGloXc
https://www.youtube.com/watch?v=5SjDAQGloXc

REFERENCES

References

[1] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile
app development,” in Proc. of ESEM’13, pp. 15–24, 2013.

[2] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proc. of ESEC/FSE’13, pp. 224–234, 2013.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon, “Using GUI ripping for automated testing of Android applications,”
in Proc. of ASE’12, pp. 258–261, 2012.

[4] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of android apps
with minimal restart and approximate learning,” in Proc. of OOPSLA’13,
pp. 623–640, 2013.

[5] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated testing
for Android applications,” in Proc. of ISSTA’16, pp. 94–105, 2016.

[6] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk, “Mining Android app usages for generating actionable GUI-based
execution scenarios,” in Proc. of MSR’15, 2015.

[7] M. Bozkurt and M. Harman, “Automatically generating realistic test input
from web services,” in Proc. of SOSE’11, pp. 13–24, 2011.

[8] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of crowd-
sourcing in software engineering,” Journal of Systems and Software, 2016.
http://dx.doi.org/10.1016/j.jss.2016.09.015.

[9] J. M. S. Motta, G. C. de Carvalho, and R. McMaster, “Robot calibration
using a 3d vision-based measurement system with a single camera,” Robotics
and Computer-Integrated Manufacturing, vol. 17, no. 6, pp. 487 – 497, 2001.

9

http://dx.doi.org/10.1016/j.jss.2016.09.015

