
0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E MAY/JUNE 2018 | IEEE SOFTWARE 101

SOFTWARE
ENGINEERING

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

Nicolai Parlog on Java 9
Modules
Nate Black

Nate Black: The big change in Java 9
is the introduction of modules. How
do you explain modules to people
who know Java but are new to the
concept?

Nicolai Parlog: When I think about
code, I have a huge graph in my head.
I have a class. What does this class
do? It usually calls other classes.
In my head this class is a bubble.
Other classes are also bubbles, and
then there are arrows between them
where they call each other. In com-
puter science you would call [this a
“graph”], the classes “nodes,” and
the edges “arrows.”

But [this is] not only for classes.
You can go lower. You can say, “I
have the same thing for methods, be-
cause methods call each other.” You

can go the other way as well—to
packages and JARs [Java Archives].
[A JAR is a ZIP file that contains the
class files that are the combined by-
tecode of the Java classes.]

The graph also looks different at
compile time and at runtime. But it
is an idea that many people have:
How does the code relate? How does
one thing call another thing?

Each thing in the graph has prop-
erties, like a name. Methods have
a name; classes have a class name;
JARs have a JAR name; packages
have a package name. They have de-
pendencies. For example, methods
make other method calls. But they
all use each other.

And there is a third property.
Each of these bubbles has some-
thing that I need. I wouldn’t call

another method just for the fun of
it. Usually, it does something that I
need. Beyond name and dependency,
it also has something that I want
to use—let’s call it an API. These
three things exist on all these levels.
But let’s stick to methods, classes,
and JARs.

For methods and classes, the
JVM [Java virtual machine] shares
our understanding. The JVM says,
“Yeah, it’s a class, it has a class
name, and it has an API, which are
the public methods. And it has de-
pendencies.” You can scan the by-
tecode to find what other classes
it uses. On the level of classes and
methods, the JVM sees things like
we do.

But on the JAR level, that’s not
the case anymore. You cannot say,

From the Editor

In Episode 316 of Software Engineering Radio, host Nate Black talks with guest

Nicolai Parlog (author of the forthcoming book The Java Module System) about

Java’s evolution, emphasizing the latest release, version 9. The largest chunk cov-

ers the most significant new feature: modules. Nate and Nicolai also review the

major changes from earlier versions of Java and speculate about Java’s future. The

excerpt here covers the why and how of the module system. To hear the full inter-

view, visit www.se-radio.net or access our archives via RSS at feeds.feedburner

.com/se-radio. —Robert Blumen

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

“This JAR depends on that other
JAR, and I only want to launch the
program if that other JAR is there.”
JARs don’t have names. For exam-
ple, when you track down compli-
cated runtime errors, you sometimes
see a stack trace and wonder,
“Which JAR is this class in again?”
It was just loaded from a JAR. But
you don’t know which one.

It’s easy to see why JARs are so
useless: because a JAR is just a con-
tainer. It has no identity. This causes
all kinds of problems that we’ve got-
ten used to. We use Maven or Gradle
to provide the dependencies because
we have no other way to find out at
runtime whether everything is there.
But for public APIs, we don’t have a
good solution.

At runtime, the JVM collects all
of the JARs and puts them into one
big ball of mud. Whatever we had in
our mind about one JAR using an-
other JAR’s API, that’s all fiction.
[At runtime, a Java program is] just
a bunch of classes running in the

same environment. Everything that
is public is fair game. Even if, as a
library developer, I said, “This pack-
age is internal,” the JVM doesn’t
care. It can call whatever it wants.
That’s the situation we’re in. Java
9 takes JARs and says, “Look, you
now have an identity that the JVM
understands.”

There are a few terms floating
around. We have JPMS (Java Plat-
form Module System), Java modules,
and Project Jigsaw. Could you please
briefly explain?

Java is developed in projects. When
Mark Reinhold back in 2008 said he
wanted to have modules, he created
Project Jigsaw. Whenever JDK [Java
SE Development Kit] teams work on
something new, they create a project.
Project Jigsaw had the goal to provide
a specification and an implementation
of a module system that was geared
toward the JDK but also usable by
user code. That is Project Jigsaw. It

produced the Java Platform Module
System, although almost nobody calls
it that because it’s a mouthful. Usu-
ally people just say “modules.”

For programmers, what are modules’
benefits?

[In Java development], there’s some-
thing known as “JAR hell.” We have
gotten used to it, but it means that
the JVM doesn’t understand depen-
dencies, particularly transitive de-
pendencies, so [you] have to hunt
them down manually. Of course, we
built great tools to solve that, but
still, it’s a shortcoming of the JVM.
Something could be missing at run-
time, for example, and you wouldn’t
find out until it’s too late.

You can also have version con-
flicts. It can happen that you have
two versions of the same library that
you absolutely have to use because of
transitive dependencies. One of your
immediate dependencies uses, let’s
say, Guava 19, and the other one
uses Guava 14, and there is no way
they can both run on the same ver-
sion [of Guava]. That’s the problem.

The other issue is that we had no
encapsulation across JARs. As I said
earlier, every public type is free to
be used by everyone. The JDK itself
contains some security-relevant code,
but not everybody should be calling
that. They put in the security man-
ager, which you have to activate. If
you do so, then the security manager
is on critical code paths and checks
whether this access is allowed.

The problem with that is that it’s
a manual process. You cannot au-
tomatically put in all the places be-
cause if [the security manager is] in
a hot loop, you couldn’t make that
check every time. It has to be put
into the right places in order to not
impact performance too much. Even

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
 • 318—Host Felienne interviews Veronika Cheplygina on image recognition.
 • 317—Host Kishore Bhatia talks with Travis Kimmel on measuring engi-

neering productivity.
 • 314—Scott Piper and host Kim Carter discuss cloud security.

UPCOMING EPISODES
 • Nicole Hubbard reports on a large migration from virtual-machine scale

sets to Kubernetes.
 • Nate Tagart discusses serverless tooling and operations.
 • Maria Colgan talks about cost-based database query optimization.

SOFTWARE ENGINEERING

 MAY/JUNE 2018 | IEEE SOFTWARE 103

then, anecdotes seem to suggest that
turning the security manager on
means 10 to 15 percent less perfor-
mance. You must put it in the right
places so as not to make that 15 per-
cent into 50 percent. But that means
it’s a manual process.

When Java 8 was delayed due to
security problems, two of the five
major security breaches that Java
had were missing security manager
calls. The reason for that is that Java
does not understand that this code
is not supposed to be called by the
user—that this code is only meant
to be called by other parts of the
JDK. Because the separation on the
level of libraries does not exist in
the JDK, every call is indistinguish-
able to the JDK. You would have had
to put in manual checks to distin-
guish whether or not a call is com-
ing from code that’s allowed to make
that call. This level of manual secu-
rity was a problem.

Last but not least, Java is a
monolith. [Before Java 9], you had
just one Java runtime: it’s all or
nothing. And it was rather big. In
the meantime, memory got so much
larger, but with Docker images and
other virtualization, the idea of a
smaller runtime containing only
the stuff that I need has come back.
Why would I want an 80-Mbyte
runtime, half of which is probably
[GUI and windowing libraries] that
I never use because I am writing
back end? Why have that in the de-
fault runtime? Why not have a run-
time that can be split apart?

Class path hell, no encapsula-
tion, the security problem, and the
rigid Java runtime: those were the
big problems that the module system
could tackle.

I’d like to understand how modules
and Java 9 address some of those

problems. But first, let’s talk at a
high level about how modules work.

There’s a one-to-one relationship
between JARs and modules. What
is this module’s name? What other
modules does it need? And what is
its API? (The API part is not that im-
portant at the moment because we’ve
largely talked about dependencies.)

The JDK itself got split up into
about 100 modules. Around 20 or
30 of them are publicly supported
and standardized platform modules.

The module system can make
sure that all transitive dependencies
are present. It will not let you launch
otherwise. It understands the de-
pendency graph of JARs. If you are
missing a dependency, even though
it’s not a direct dependency, it tells
you which one. That solves the first
part of the problem.

I invented a new term: “launch
time.” Technically it’s during runtime,
but it’s at the beginning of runtime.
Even if the first time some service
runs is an hour into the program run,
it won’t take an hour to realize that
something is missing and then crash.

In Java 9 there is a module path,
which is like the class path, but for
modules. For example, when you
have Guava 14 and 19 on the module
path, then it will not launch. It will
say, “You have the same thing twice.”

The module system does not un-
derstand versions and does not help
you with the version conflict thing.
It enables you to find out at launch
time that you have a problem, but it
does not provide a solution.

Another problem occurs when
there is a fork in a package. One
says, “I’m Guava,” and the other
says, “I’m whatever the other fork
is called,” so they’re not the same
modules. But they still contain the
same packages. This is a so-called

split-package problem. The module
system ensures that each package is
only contained in one module. You
cannot have Guava and its fork on
the module path as long as they con-
tain the same packages. You get an
error then as well.

What does it look like to use the
module system? Does it change how
people write code? Is it a change in
tooling? What does it look like at the
implementation level to use modules?

A module is just a JAR with a mod-
ule descriptor. It’s a regular JAR.
You can even compile and run it
on Java 8. The additional file is called
module-info.class. It’s compiled from
module-info.java, which contains
the module declaration. The compiler
sees it and thinks “Aha, we’re doing
a module here.” Then it expects the
module things to be in place. [It’s
the] same at runtime. If you have a
JAR with that module descriptor,
and you put it onto the module path,
then the JVM ensures that you want
to have the other modules in place.

The developer creates the mod-
ule descriptor. The file contains
module . . . ,your module name., which
must be a regular Java identifier. It is
recommended that the module name
is the same as the package. Then
[come] curly braces, and then come
two blocks: requires and exports. Requires
is a list of the modules that your
module needs.

And then come the exports. You ex-
port the packages that contain your
API. You list only the packages that
you intend to support. The other
packages that are internal—the
module system guards these parts.
By not exporting, you are making
a statement that “this is not a sup-
ported API.” And you are telling the
JVM, “Don’t let people use this.”

SOFTWARE ENGINEERING

104 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

And then you’re done. Then
you’ve done all you needed to create
your module.

To summarize, there’s no change
to the Java code that I’m writing.
There’s an additional small file
called module-info.java that con-
tains a list of all my dependencies
and my exported API. I’m explicitly
saying what my supported API is.

Yes. [In a project] you may have the
problem that you create a JAR and
you have a small subproject with a
dozen packages, where you created
two or three of them to be publicly

used, but the others, you didn’t con-
sider them to be the API.

When you are doing a big proj-
ect with dozens of modules, and you
wrote one of them a couple of years
ago, before Java 9, other developers
would use that package—they have
no incentive not to. There was no step
in the process to question whether or
not to do that. The IDE asks, “Do
you want to auto-import that?” and
I’m, like, “Sure, I want to”—and it’s
done. In my personal experience, no-
body really looks at import clauses
during code reviews. There are so
many of them that nobody really
bothers going through them.

[With Java 9], if I start using your
old JAR, I have to add an export.
And then, at code review, somebody
can say “Are you sure?” This means
that we’re going to think much more
about public APIs.

Is this a change in thinking that’s on a
par with generics and lambdas in terms
of its effect on how people write code?

I think no. In day-to-day program-
ming, it will show up much less.
But that doesn’t mean it has less
of a long-term effect. Many of the
problems that slow down proj-
ects and eventually cause them to
fail are not that the classes got too
wordy, which lambda fixes. The
long-term problems are often that
the development speed got so slow
because everybody was doing ev-
erything that was allowed to be
done. You end up with a big ball
of mud of JAR references, with
no oversight over dependencies
or APIs.

And the module system is a tool
that helps you to keep in mind that
you don’t want to do that.

ABOUT THE AUTHOR

NATE BLACK is a software engineer at Sleeperbot. Contact him at

nathanael.black@gmail.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications Office: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE Software by visiting www.computer.
org/software.

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for profit; 2) includes this notice and a full citation to the original work on
the first page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright no-
tice and a full citation to the original work appear on the first screen of the
posted copy. An accepted manuscript is a version which has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or promo-
tional purposes or for creating new collective works for resale or redis-
tribution must be obtained from IEEE by writing to the IEEE Intellec-
tual Property Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or
pubs-permissions@ieee.org. Copyright © 2018 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first
page is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923.

