

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 23, 2024

From Monolithic to Microservices An Experience Report from the Banking Domain

Bucchiarone, Antonio; Dragoni, Nicola; Dustdar, Schahram; Larsen, Stephan T.; Mazzara, Manuel

Published in:
IEEE Software

Link to article, DOI:
10.1109/MS.2018.2141026

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., & Mazzara, M. (2018). From Monolithic to
Microservices An Experience Report from the Banking Domain. IEEE Software, 35(3), 50-55.
https://doi.org/10.1109/MS.2018.2141026

https://doi.org/10.1109/MS.2018.2141026
https://orbit.dtu.dk/en/publications/d1842a66-a600-422c-90aa-71f7b0abf756
https://doi.org/10.1109/MS.2018.2141026

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318653629

From Monolithic to Microservices: An experience report

Technical Report · August 2017

DOI: 10.13140/RG.2.2.34717.00482

CITATION

1
READS

2,353

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Microservices View project

SMALL - Smart Mobility Services for All! View project

Antonio Bucchiarone

Fondazione Bruno Kessler

104 PUBLICATIONS 1,165 CITATIONS

SEE PROFILE

Nicola Dragoni

Örebro universitet, Sweden, and Technical University of Denmark

119 PUBLICATIONS 1,396 CITATIONS

SEE PROFILE

Schahram Dustdar

TU Wien

25 PUBLICATIONS 1,381 CITATIONS

SEE PROFILE

Manuel Mazzara

Innopolis University

214 PUBLICATIONS 1,524 CITATIONS

SEE PROFILE

All content following this page was uploaded by Manuel Mazzara on 24 July 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/318653629_From_Monolithic_to_Microservices_An_experience_report?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/318653629_From_Monolithic_to_Microservices_An_experience_report?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Microservices?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SMALL-Smart-Mobility-Services-for-All?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Bucchiarone?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Bucchiarone?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fondazione_Bruno_Kessler?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Bucchiarone?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicola_Dragoni?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicola_Dragoni?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicola_Dragoni?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Schahram_Dustdar2?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Schahram_Dustdar2?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Schahram_Dustdar2?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel_Mazzara?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel_Mazzara?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Innopolis_University?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel_Mazzara?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel_Mazzara?enrichId=rgreq-dfb4474b0658564513772879ef82291f-XXX&enrichSource=Y292ZXJQYWdlOzMxODY1MzYyOTtBUzo1MTk1NTQ0Nzg4NzA1MjhAMTUwMDg4Mjg0ODAwOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

From Monolithic to Microservices:
An experience report

Antonio Bucchiarone∗, Nicola Dragoni†, Schahram Dustdar‡, Stephan T. Larsen§, Manuel Mazzara¶
∗ Fondazione Bruno Kessler, Trento, Italy

bucchiarone@fbk.eu
† Technical University of Denmark and Örebro University, Sweden

ndra@dtu.dk
‡ TU Wien

dustdar@dsg.tuwien.ac.at
§ Danske Bank, Denmark

stephantl@gmail.com
¶ Innopolis University, Russia

m.mazzara@innopolis.ru

Abstract—Microservices have seen their popularity blossoming
with an explosion of concrete applications in real-life software.
Several companies are currently involved in major refactoring
of their back-end systems in order to improve scalability. In
this paper, we present an experience report of a real world case
study in order to demonstrate how scalability is positively affected
by re-implementing a monolithic architecture into microservices.
The case study is based on the FX Core system, a mission critical
system of Danske Bank, the largest bank in Denmark and one
of the leading financial institutions in Northern Europe.

Index Terms—Microservices, Software Architecture, Scalabil-
ity.

I. INTRODUCTION

Microservices [10] is an architectural style originated from
Service-Oriented Architectures (SOAs) [8] with the idea of
bringing in the small (within an application) those concepts
that worked in the large, i.e. for cross-organization business-
to-business workflow. The shift towards microservices is a sen-
sitive matter these days, seeing several companies involved in
a major refactoring of their back-end systems to accommodate
the advantages of the new paradigm. This is the case of the
system and the institution considered in this paper, i.e., the FX
Core of Danske Bank.

In monolithic architectures, the modularization abstractions
rely on the sharing of resources of the same machine (mem-
ory, databases, files) and the components are therefore not
independently executable. A notable problem of monoliths is
maintainability and evolvability, and in general all the aspects
related to change. In the microservice paradigm, a system is
structured by composing small independent building blocks,
each with a dedicated persistence tool and communicating
exclusively via message passing. In this kind of organization,
the complexity is moved to the level of coordination of
services (often called orchestration [9]).

Two questions are often asked: ”are Microservices just
tiny services?” and ”Are Microservices yet another name
for SOA?”. A Microservice is not just a tiny service. Each

microservice is expected to implement a single business ca-
pability, in fact a very limited system functionality, bringing
benefits in terms of service maintainability and extendability.
Since each microservice represents a single business capabil-
ity, which is delivered and updated independently, discovering
bugs or adding minor improvements do not have any impact
on other services and on their releases. In common practice,
it is also expected that a single service can be developed
and managed by a single team [10]. The idea to have a
team working on a single microservice is rather appealing: to
build a system with a modular and loosely coupled design,
one should pay attention to the organization structure and
its communication patterns as they, according to Conway’s
Law [3], directly impact the produced design. So if one creates
an organization with each team working on a single service,
such structure will make the communication more efficient
not only on the team level, but within the whole organization,
improving the resulting design in terms of modularity.

Microservices is not yet another name for SOA. Indeed,
there are some notable differences. In SOA, services are not
required to be self-contained with data and User Interface,
and their own persistence tools, eg. database. SOA has no
focus on independent deployment units and related conse-
quences, it is simply an approach for business-to-business
intercommunication. The idea of SOA was to enable business-
level programming through business processing engines and
languages such as WS-BPEL and BPMN that were built on top
of the vast literature on business modelling [11]. Furthermore,
the emphasis was all on service orchestration more than
service development and deployment.

In this paper, we report the experience of migration from
monolithic to microservice of the Danske Banks FX Core
system. The documentation of the original system architecture
was sparse and the vast majority of technical details have been
obtained by direct conversations, interviews and discussions
with the FX Core team, and by manually inspecting the source
code. This was a lengthy process given the complexity of the

original monolithic architecture, never thoroughly documented
before, and here we can report some aspects of this analysis.
However, for the information to be publicly available, all
the confidential details such as concrete names of protocols,
external providers and specific services has been withheld.
Furthermore, the internal logic of certain components could
not be described in depth.

II. DANSKE BANK FX Core SYSTEM

Foreign Exchange, often abbreviated as forex or FX, is
the exchange of currencies, i.e. the conversion from one
currency to another. Exchange of currencies is of interest
to both private individuals, corporations, financial institutions
and governments. FX encompasses everything from private
transactions performed in foreign countries (e.g. Internet shop-
ping from abroad and use of credit cards while traveling) to
corporations moving their financial assets from one currency
to another and exporting or importing products to and from
foreign markets. FX has grown with globalization and it is now
globally the largest financial market in the world, averaging
a daily transaction volume of roughly 5 trillion dollars. This
results in some transactions reaching the hundred millions of
dollars. Unlike the stock exchange, there is no centralized
market, instead FX is decentralized and done over-the-counter
(OTC), i.e. traders negotiate prices and trade directly between
each other. Traders are typically the largest multinational
banks, trading on behalf of their customers or themselves.
Additionally, due to the decentralized and global nature of
FX, the market is open 24 hours a day, five days a week [7].

The FX IT (Fig 1) system is part of the banks Corpo-
rates and Institutions (C&I) department and handles price
streaming, trades, line-checks and associated tasks, such as
analytics and post-trade management. FX IT acts as a gateway
between the international markets and Danske Banks clients,
including their own traders. C&I’s clients are mainly large
financial institutions and large multi-national corporations.
They continuously process streams of currency pair prices
from the markets on which they calculate margins to reduce
risk, especially important on swaps and forwards, before
streaming final prices to clients. Clients can then act on a
price by registering a trade or check if they have the required
collateral with line-checks.

The FX Core system is part of FX IT and it handles trades
and line-checks. This includes registration, validation and
post-trade management. Below there is a brief description of
the two main responsibilities of FX Core.

LineChecks are used to check whether a client has the financial
collateral to perform a trade and how a trade will affect
said collateral, also called their Line. This collateral can be
a multitude of financial assets, e.g. stocks, bonds or cash.
Line-checks are always executed as part of a trade, but is also
run separately, so Danske Banks traders can ensure that their
customers are capable of requested trades.
Trades are received from both Danske Banks clients and
external providers, i.e. external clients and markets. The trade

Fig. 1. FX IT handles both price streaming and requests for trades and
line-checks from global markets, e.g. other banks, pension funds and large
corporations. Prices of currency pairs are streamed to FX IT, which then
calculates prices of specific trades, before streaming them to external and
internal clients. The clients can then request FX IT for trades or line-checks
on the prices they have received. These clients are usually used by Danske
Banks internal traders and external customers. Additionally, trade and line-
check requests can also be received from the markets, when banks wish to
exchange currencies directly. FX Core is part of FX IT, but handles tasks
associated with trades and line-checks, thus not handling any of the price
streaming and stream processing.

is then validated and line-checked, before being registered.
Depending on the type of trade, the trade is either done
immediately, i.e. a spot trade, or registered in the system
as a contract for future execution, i.e. swaps and forwards.
When the trade is executed it involves moving the financial
assets between banking books, i.e. from one account to
another. After a trade has been registered a number of actions
can be executed on it, e.g. multiple trades can be joined to
ease administration or be split into smaller trades to reduce
margins, forward and swap contracts can be extended or
pre-settled and trades can be corrected or deleted by internal
clients. Additionally, the system can also run batch jobs in
order to balance books between departments or to analyze
trades, to e.g. detect fraudulent behavior such as money
laundering.

III. FX CORE MONOLITH

Danske Banks monolithic system is presented in Figure 2.
The services are deployable individually and are replicated
and deployed across a cluster. The system also utilizes APIs
as interfaces for clients to interact with the services of the
system, and a messaging system to delegate received requests
from external providers. Despite of these solutions to facilitate
scalability, Danske Bank has experienced severe challenges
when trying to rapidly develop the system and deploying con-
sistent changes, and in general in handling system complexity.
Full details on the architecture can be found in [4].

The monolithic architecture is componentized in a variety
of ways. The system utilizes services, shared software libraries
and thick desktop clients and it is deployed on three Windows
Server hosts, located at the three Danske Banks data center
locations. Each of the system’s components can be deployed
individually, as they are independent processes, but in fact

Fig. 2. Danske Banks monolithic architecture. Red services are infrastructure
services, green are part of the monolith, blue is the client, yellow are external
provider APIs and grey are external Danske Bank systems.The components
of the system integrate directly with each other, resulting in many different
communication technologies and high coupling. The external provider APIs
are part of the monolith and consist of multiple services, with each one
connecting to a different provider. Their names have been excluded due to
confidentiality. The shared components are used across almost all services and
are also internally dependent on each other. The ForexData database is one
big monolithic MS SQL database, shared amongst many of the monolithic
components and also accessed by external systems

they are always co-located as a whole system for availability
reasons and for the components to be highly coupled.

IV. FX CORE MICROSERVICE ARCHITECTURE

The Danske Banks new FXCore architecture is based on
the microservice architectural style and is is intended to
completely replace the old monolithic architecture. The overall
infrastructure is depicted in Figure 3.

Danske Banks FX Core microservice architecture is hosted
on private data-centers, i.e. not in the cloud. This means that
new hosts can not be provisioned and de-provisioned as rapidly
and automated as in a cloud. It is in their interest to provide a
private cloud for systems to run in, but due to regulations
on banking data, this is still work in progress. There are
three data-center locations in Denmark, which can be utilized
to achieve better availability and increased resilience to the
internal systems.

On the IT departments roadmap is the adoption of the Red
Hat OpenShift [6] Iaas/PaaS platform, on the internal data-
centers. However, at the moment, the infrastructure consists

Fig. 3. The new FX Core microservice architecture. Red services are infras-
tructure services, green are foundation services, blue are business services
and the yellow is external provider APIs. All non-infrastructure services
communicate via messaging over RabbitMQ and have direct access to the
Redis cache, which is used to cache data from DB2. Databases in the diagram
should be seen as database management systems (DBMS), meaning that
although four services use PostgreSQL they all have their own standalone
database within the DBMS

of VM’s ordered through a web-portal, and which are setup
manually by the FX Core team.

V. CONCLUSIONS

The re-engineering of the system discussed in this paper led
to reduced complexity, lower coupling, higher cohesion and a
simplified integration. The large components of the monolithic
architecture, which were highly coupled, had overlapping re-
sponsibilities and integrated in a multitude of ways, have been
substituted by several independent microservices. As a direct
consequence, the size of the services is now generally smaller
when compared to the large components of the monolith.
Since services implement focused functionalities, even their
names reveal to a large extent their responsibilities, detail
which was previously absent. Services have now reduced
feature overlapping. For example, functionalities such as trade-
registration and line-checks in the monolithic architecture were
handled by both ForexAPI and RequestService. The reason
of this had to be found in the historical development of
the system. After the analysis and the re-engineering, the
microservice architecture features a TradingService and a
LineCheckService that independently handle these functions.
Furthermore, with a polyglot architecture, i.e. not technology
dependent, the development team is no longer dependent on
the .NET platform or MS SQL databases. Instead, services can
be implemented in any language.

The future will see a growing attention regarding the
matters discussed here and the development of new pro-
gramming languages intended to address the microservice
paradigm [5]. Languages for microservices should be able
to model microservices in a uniform way and at a level of
abstraction that also allows for their easy interconnection [2].

Microservice composition techniques are needed and have
to be used when: (a) frequent revision of microservices are
needed, (b) changes in existing offered functionalities (i.e.
microservices behavior), and adjustment of business policies
and objectives (i.e., composition requirements) are required
[1]. Microservices-based systems must be self-adaptive ac-
cording to the available microservices in the specific execution
context and to the changes affecting its execution. To guarantee
self-specialization (i.e., automatic selection and composition
of microservices), languages for microservices must include
the adaptation aspect as an inner characteristich of the system
design (i.e, Adaptive by-Design [2]) and not an exception to
manage.

REFERENCES

[1] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik. A context-aware
framework for dynamic composition of process fragments in the internet
of services. J. Internet Services and Applications, 8(1):6:1–6:23, 2017.

[2] A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, and P. Traverso.
Incremental composition for adaptive by-design service based systems.
In IEEE ICWS 2016, pages 236–243, 2016.

[3] Melvin E Conway. How do committees invent. Datamation, 14(4):28–
31, 1968.

[4] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara. Microservices:
Migration of a mission critical system. https://arxiv.org/abs/1704.04173.

[5] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi. Microservices: a
language-based approach. In Present and Ulterior Software Engineering.
Springer, 2017.

[6] Red Hat. Openshift: Paas by red hat, built on docker and kubernetes.
https://www.openshift.com/.

[7] A. MacEachern. How are international exchange rates set? http://www.
investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp.

[8] Matthew C. MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown,
Rebekah Metz, and Booz Allen Hamilton. Reference model for service
oriented architecture 1.0. OASIS Standard, 12, 2006.

[9] M. Mazzara and S. Govoni. A Case Study of Web Services Orchestration,
pages 1–16. Springer Berlin Heidelberg, 2005.

[10] N.Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina. Microservices: yesterday, today, and
tomorrow. In Bertrand Meyer and Manuel Mazzara, editors, Present
and Ulterior Software Engineering. Springer, 2017.

[11] Z. Yan, M. Mazzara, E. Cimpian, and A. Urbanec. Business process
modeling: Classifications and perspectives. In BPSC 2007., page 222,
2007.

View publication statsView publication stats

https://arxiv.org/abs/1704.04173
https://www.openshift.com/
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
https://www.researchgate.net/publication/318653629

	Introduction
	Danske Bank FX Core system
	FX Core Monolith
	FX Core Microservice Architecture
	Conclusions
	References

