
FOCUS: GUEST EDITORS’ INTRODUCTION

24	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Microservices
The Journey So Far and Challenges Ahead

Pooyan Jamshidi, Carnegie Mellon University

Claus Pahl, Free University of Bozen-Bolzano

Nabor C. Mendonça, University of Fortaleza

James Lewis, ThoughtWorks

Stefan Tilkov, INNOQ

FOCUS: GUEST EDITORS’ INTRODUCTION

	 MAY/JUNE 2018 | IEEE SOFTWARE� 25

MICROSERVICES ARE THE latest
trend in software service design, de-
velopment, and delivery.1 They con-
stitute an approach to software and
systems architecture that builds on
the well-established concept of mod-
ularization but emphasizes techni-
cal boundaries. Each module—each
microservice—is implemented and
operated as a small yet independent
system, offering access to its inter-
nal logic and data through a well-
defined network interface.2 This
increases software agility because
each microservice becomes an in-
dependent unit of development, de-
ployment, operations, versioning,
and scaling.

Microservices and
Service-Oriented
Architecture
In relying on independent services
with clear boundaries, microser-
vices are similar to the more tradi-
tional service-oriented architecture
(SOA).3 Arguably, you could claim
that microservices are a particu-
lar subtype of SOA. But although
SOA tends to rely strongly on pro
ducts such as enterprise service buses
or other, similarly heavyweight
middleware, microservices rely only
on lightweight technologies.

In addition, SOA is often associ-
ated with web services protocols,
tools, and formats such as SOAP,
WSDL (Web Services Description
Language), and the WS-* family of
standards. In contrast, microservices
typically rely on REST (Represen-
tational State Transfer) and HTTP4
or other formats perceived as being
lightweight and native for web de-
velopment. Finally, SOA is viewed
mostly as an integration solution,
whereas microservices are typically
applied to build individual software
applications.

Microservices’ Benefits
A number of benefits are often associ-
ated with microservices. Three of the
most important ones are faster deliv-
ery, improved scalability, and greater
autonomy.2 It’s no coincidence that
these benefits tend to relate to market
forces experienced by many organiza-
tions. This explains why it sometimes
seems as if microservices have become
the standard way of doing things in
many development projects.5

Although microservice archi-
tectures come in different flavors,
they all aim to speed up delivery—
turning an idea on some product
manager’s or other project member’s
whiteboard into a feature running in
production, as quickly as possible.
Many organizations now see IT as the
main facilitator of greater agility in
terms of adapting to market changes,
as opposed to its past role as a cost
center best kept to a minimum. To
achieve that goal, microservices typi-
cally are packaged and deployed in
the cloud using lightweight container
technologies,6 following industry-
proven DevOps practices7 and sup-
ported by fully automated software
integration and delivery machinery.8
This enables rapid deployment of
microservices in multiple execution
environments (for example, testing,
staging, and canary release) on ar-
bitrary schedules, with a bare mini-
mum of centralized management.9

The term “scalability” is some-
what ambiguous. It could refer to the
system’s runtime scalability—for ex-
ample, its adaptability (at a reason-
able cost) to changes in the number
of users accessing it. Or, it could re-
fer to the development process’s abil-
ity to accommodate many developers
working on it in parallel.

With microservices, the unit of
scaling is each microservice. So,
at runtime, services can be scaled

differently according to their specific
requirements. But the microservice
is also the unit of development and
deployment. So, each service can be
developed, deployed, and operated by
a different team, allowing for a more
parallel introduction of new features.

Finally, related to the concept of
a scalable organization, each micro
service is expected to offer an au-
tonomous, bounded unit of both
development and runtime decisions.
This lets a team make localized de-
cisions for each service—for exam-
ple, in terms of the programming
language, libraries, or frameworks
used; the database technology (if
any) employed; or any other aspect
of its implementation strategy. This
allows for a best-of-breed approach,
with each team selecting the optimal
choice for its area of responsibility.

Microservice Evolution
According to James Lewis and Martin
Fowler, the term “microservices” was
first discussed at a May 2011 software
architecture workshop, to denote
a common architectural approach
the workshop participants had been
exploring.2 Previously, prominent
industry experts had already been ex-
ploring some of the same ideas, albeit
under different guises. For instance,
Werner Vogels at Amazon had de-
scribed its architectural approach as
“encapsulating the data with the busi-
ness logic that operates on the data,
with the only access through a pub-
lished service interface,”10 whereas
Adrian Cockcroft, then at Netflix,
referred to “loosely coupled service-
oriented architecture with bounded
contexts.”11 Other terms used in in-
dustry at that time to convey similar
concepts were “fine-grained SOA”
and “SOA done right.”

Those early SOA-related terms
were all testimony to the fact that

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

microservices are rooted firmly in
SOA. However, they also reveal
that the industry itself wasn’t fully
satisfied with SOA, as evidenced by
the en masse switch from SOAP to
REST, a more lightweight and sim-
pler service invocation protocol.

Other important software de-
velopment concepts played a key
role in the emergence of micro
services. This was especially true
for domain-driven design (DDD), a
model-based-development approach
guided by principles such as bounded
organization contexts and continu-
ous software integration.12 Also
highly influential were approaches
such as design for failure, data isola-
tion, infrastructure automation, agil-
ity at scale, cross-functional teams,
and end-to-end product ownership.2

These approaches solved many chal-
lenges of distributed web-scale ap-
plications (Facebook, Spotify, and so
on) as well as organizational issues
that large-scale companies faced.

Here, we look at microservices’
evolution from both the technologi-
cal and architectural perspectives.

The Technological Perspective
From the technological perspec-
tive, early microservice applications
were strongly influenced by a new
generation of software development,
deployment, and management tools.
As microservice architectures became
more popular, those tools contin-
ued evolving to support a wider,
more diverse user base, leading to
the creation of even more-advanced
technologies.

Figure 1 shows a timeline with 10
“waves” of software technologies,
including some of their most repre-
sentative tools, that have influenced
microservice application develop-
ment, deployment, and operation
over the last decade.

The first five technological waves
already existed before the term “micro
services” was generally adopted. The
first wave comprises lightweight con-
tainer technologies (for example, LXC
and Docker), which allow individual
services to be more effectively pack-
aged, deployed, and managed at run-
time. The second wave comprises
service discovery technologies (for ex-
ample, Eureka and Consul), which let
services communicate with each other
without explicitly referring to their
network locations.

FIGURE 1. A microservice technologies timeline.

Foundations: service-oriented architecture, domain-driven design, design for failure, data isolation, infrastructure automation,
agility at scale, and end-to-end ownership

Time2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Containerization LXC (2008), Docker (2013), rkt (2014)

Finagle (2011), Hystrix (2012), Proxygen (2014), Resilience4j (2016)

Container orchestration Mesos (2009), Kubernetes (2014), Docker Swarm (2014),
Amazon Elastic Container Service (2015), Nomad (2015)

Zookeeper (2008), Eureka (2012), etcd (2013), Synapse (2012), Consul (2014)

Service mesh Linkerd (2016), Istio (2017), Conduit (2017)

Continuous delivery / DevOps Ansible (2012), Drone (2014), Spinnaker (2015),
Amazon Web Services CodePipeLine (2015), Otter (2016)

Fault-tolerant communication

Chaos engineering Chaos Monkey (2012), Simian Army (2014), Pumba (2016),
Chaos Toolkit (2017)

Sidecar SmartStack (2013), Prana (2014), Envoy (2016)

Service discovery

Serverless computing
Amazon Web Services Lambda (2014), Azure Functions (2016),
Google Cloud Functions (2016), OpenWhisk (2016),
Spring Cloud Function (2017)

The first use of "microservices" as a
common architectural approach

Graphite (2008), InfluxDB (2013), Sensu (2013), cAdvisor (2014), Prometheus (2014) Monitoring

	 MAY/JUNE 2018 | IEEE SOFTWARE� 27

The third wave comprises moni-
toring technologies (for example,
Graphite and Sensu), which enable
runtime monitoring and analysis
of the behavior of microservice re-
sources at different levels of detail.
The fourth wave comprises con-
tainer orchestration technologies
(for example, Mesos and Kuber-
netes), which automate container
allocation and management tasks,
essentially abstracting away the un-
derlying physical or virtual infra-
structure from service developers.
The fifth wave comprises latency
and fault-tolerant communication
libraries (for example, Finagle and
Hystrix), which let services commu-
nicate more efficiently and reliably.

The other five waves emerged in
response to microservices’ increasing
popularity. The sixth wave comprises
continuous-delivery technologies (for
example, Ansible and Drone), which
provide general integration solu-
tions to automate many of the
DevOps practices typically used in a
web-scale microservice production
environment.13 The seventh wave
comprises chaos-engineering tech-
nologies (for example, Simian Army
and Chaos Toolkit), which automate
the execution of critical systemwide
reliability and security testing tech-
niques, such as failure and attack
injection.14

The eighth wave comprises side-
car technologies (for example, Prana
and Envoy), which encapsulate
communication-related features such
as service discovery and the use of
protocol-specific and fault-tolerant
communication libraries, so as to
abstract them from service devel-
opers.15 The ninth wave comprises
“serverless” computing technolo-
gies (for example, AWS Lambda and
OpenWhisk), which implement the
function-as-a-service (FaaS) cloud

model.16 (AWS stands for Amazon
Web Services.) This model lets
cloud users develop, deploy, and
deliver into production more fine-
grained service functionalities—or
functions—without the complexity
of creating and managing (for exam-
ple, to cope with inconsistent traffic
patterns) the infrastructure resources
necessary for their execution. Fi-
nally, the tenth wave comprises ser-
vice mesh technologies (for example,
Linkerd and Istio), which build
on sidecar technologies to provide
a fully integrated service-to-service
communication monitoring and
management environment.17

The vast majority of the tools in
Figure 1 originated from industry.
One exception is Mesos, which orig-
inated from a research prototype de-
veloped at UC Berkeley. Despite their
industry origin, most of these tools
are publicly available as open source
projects. Table 1 gives the URL for
each tool.

The Architectural Perspective
Those waves’ impact has been re-
flected in how microservice ap-
plications have evolved from an
architectural perspective. Figure 2
illustrates four generations of micro
service architectures.

In the first generation (see Figure
2a), individual services were packed
using lightweight container tech-
nologies, such as LXC. They were
then deployed and managed at run-
time using a container orchestration
tool, such as Mesos. Each service
was responsible for keeping track
of the location of the other services,
which were invoked following spe-
cific communication protocols. Any
failure-handling mechanism, such as
retry and fall back, was implemented
directly in the services’ source
code. As the number of services per

application increased and the need
to deploy and redeploy services in
different execution environments
became more frequent, locating the
appropriate service instances to in-
voke became a huge issue. Also, as
new services were implemented using
different programming languages,
reusing existing discovery and failure-
handling code became increasingly
difficult.

To address some of those issues,
the second generation (see Figure 2b)
introduced discovery services and re-
usable fault-tolerant communication
libraries. Services used a common
discovery service, such as Consul,
to register their provided function-
alities. Client services could then dy-
namically discover and invoke these
functionalities without any explicit
reference to the invoked services’
location. During service invocation,
all protocol-specific and failure-
handling features were delegated
to an appropriate communica-
tion library, such as Finagle. This
strategy not only simplified service
implementation and testing but also
allowed reuse of boilerplate commu-
nication code across services.

However, as those libraries be-
came increasingly sophisticated, and
because reimplementing them in a
new programming language isn’t a
trivial task, developers were often
forced to implement new services
using only the languages for which
those libraries were already avail-
able. Consequently, developers no
longer explored microservices’ full
benefits, especially regarding devel-
opers’ supposed autonomy to choose
any programming language or devel-
opment technology they deemed the
most appropriate to satisfy specific
service needs.

In response, the third generation
(see Figure 2c) introduced standard

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Table 1. URLs for the microservice tools in Figure 1.

Tool category Tool name URL

Container engine LXC linuxcontainers.org

Docker www.docker.com

rkt coreos.com/rkt

Service discovery ZooKeeper zookeeper.apache.org

Eureka github.com/Netflix/eureka

etcd coreos.com/etcd

Synapse github.com/airbnb/synapse

Consul www.consul.io

Monitoring Graphite graphiteapp.org

InfluxDB github.com/influxdata/influxdb

Sensu sensuapp.org

cAdvisor github.com/google/cadvisor

Prometheus prometheus.io

Container orchestration Mesos mesos.apache.org

Kubernetes kubernetes.io

Docker Swarm docs.docker.com/engine/swarm

Amazon Elastic Container Service aws.amazon.com/ecs

Nomad www.nomadproject.io

Fault tolerance Finagle twitter.github.io/finagle

Hystrix github.com/Netflix/Hystrix

Proxygen github.com/facebook/proxygen

Resilience4j github.com/resilience4j/resilience4j

Continuous delivery Ansible www.ansible.com

Drone drone.io

Spinnaker www.spinnaker.io

Amazon Web Services CodePipeLine aws.amazon.com/codepipeline

Otter inedo.com/otter

Chaos engineering Chaos Monkey github.com/Netflix/chaosmonkey

Simian Army github.com/Netflix/SimianArmy

Pumba github.com/alexei-led/pumba

Chaos Toolkit chaostoolkit.org

	 MAY/JUNE 2018 | IEEE SOFTWARE� 29

service proxies, or sidecars, such as
Envoy, as transparent service inter-
mediates. The idea was to further
improve software reusability by
having sidecars encapsulate all ser-
vice discovery and communication
features. Because each sidecar is a
self-contained service, this strategy
immediately brought the full benefits
of existing fault-tolerant communi-
cation libraries to any new program-
ming language, thus also increasing
development autonomy.

When used as network interme-
diaries, sidecars become the natural
locus for monitoring the behavior of
all service interactions in a micro
service application. This is exactly
the idea behind service mesh tech-
nologies such as Linkerd. These tools
extend the notion of self-contained
sidecars to provide a more integrated
service communication solution. Ap-
plication operators can dynamically
monitor and manage the behav-
ior of multiple distributed sidecars,

by means of a centralized control
plane.18 In this way, operators can
exert more fine-grained control over
a variety of service-to-service com-
munication features, including ser-
vice discovery, load balancing, fault
tolerance, message routing, and
security.

The fourth generation (see Figure
2d) aims to bring microservice
applications to a new realm. The
idea is to exploit recent FaaS
and severless-computing technolo-
gies, such as AWS Lambda, to further
simplify microservice development
and delivery. With this serverless ar-
chitecture, microservice applications
would essentially turn into collec-
tions of “ephemeral” functions, each
of which could be created, updated,
replaced, and deleted as quickly and
arbitrarily as necessary.19

One interesting aspect of the
serverless architecture is whether
communication-centric technologies,
such as sidecars and service meshes,

would still be necessary. Existing
FaaS platforms don’t yet provide
all the communication and traf-
fic management features that those
two technologies provide. So, you
could arguably conceive of a sce-
nario in which sidecar-like func-
tions are created to intermediate all
function-to-function interactions in a
serverless application (see Figure 2d).
A higher-level control plane func-
tion could then monitor and manage
those sidecar functions’ behavior,
forming a new kind of service (or
function) mesh.

Future Challenges
As an obvious downside of micro
services’ increased popularity, they’re
more likely to be used in situations
in which the costs far outweigh
the benefits. One reason could be
that a project would best be devel-
oped in monolithic fashion. This
doesn’t mean it shouldn’t be de-
signed to be modular, just that its

Sidecar SmartStack nerds.airbnb.com/smartstack-service
-discovery-cloud

Prana github.com/Netflix/Prana

Envoy www.envoyproxy.io

Serverless computing Amazon Web Services Lambda aws.amazon.com/lambda

Azure Functions azure.microsoft.com/services/functions

Google Cloud Functions cloud.google.com/functions

OpenWhisk openwhisk.apache.org

Spring Cloud Function cloud.spring.io/spring-cloud-function

Service mesh Linkerd linkerd.io

Istio istio.io

Conduit conduit.io

Table 1. URLs for the microservice tools in Figure 1 (cont.).

Tool category Tool name URL

30	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

modules don’t need to be as isolated
as microservices.

Microservices aren’t, and never
will be, the right solution in all

cases. More interesting, though, are
situations in which microservices
would be a good fit but teams don’t
implement them successfully. There

are many possible reasons for this.
Future developments could perhaps
address some of these challenges, as
we discuss next.

FIGURE 2. Four generations of microservice architecture. (a) Container orchestration. (b) Service discovery and fault tolerance.

(c) Sidecar and service mesh. (d) Serverless architecture.

(a)

(b)

(c)

(d)

Service A Service B

Container A Container B

Business
logic

Business
logic Service A Service B

Container A Container B

Discovery service

Discovery and
fault tolerance

Discovery and
fault tolerance

Business
logic

Business
logic

Sidecar Sidecar

Discovery service

Discovery and
fault tolerance

Traffic
management

Discovery and
fault tolerance

Traffic
management

Service A Service B

Container A Container B

Business
logic

Business
logic

Sidecar Sidecar

Discovery and
fault tolerance

Traffic
management

Discovery service

Discovery and
fault tolerance

Traffic
management

Function A Function B

Business
logic

Business
logic

Function as a service

	 MAY/JUNE 2018 | IEEE SOFTWARE� 31

Service Modularization and
Refactoring
With any approach to modulariza-
tion, finding the right modules, with
the right size, the right assignment of
responsibilities, and well-designed
interfaces, is a challenge. This is es-
pecially true for microservices and
other approaches in which badly
designed boundaries can lead to in-
creased network communication.
Such an increase might yield a sys-
tem unsuitable for its intended tasks
owing to abysmal performance and
instability.

That general challenge will re-
main, but two aspects could be ad-
dressed. First, refactoring a system
composed of microservices could
be made easier through tooling,
even though this might have unin-
tended consequences regarding an
infrastructure or development de-
pendency. Second, a move toward
asynchronous communication, more
pervasive use of libraries implement-
ing stability patterns, and more so-
phisticated runtime environments
could help address stability issues. At
the far end of this spectrum, a purely
serverless approach places a lot of
trust in the underlying platform and
the services it offers. Again, this is at
the cost of drastically increased de-
pendency on a particular environ-
ment. Such a result runs counter to
one of microservices’ original goals
and might remind some of you of
SOA infrastructure.

Service Granularity
Another issue is the lack of agreement
on the right size of microservices. Al-
though the name itself seems to sug-
gest that microservices should be as
small as possible, project teams tend
to interpret this tenet in drastically
different ways. Some teams have
microservices with only a few to a

few dozen LOC. Others encapsulate
a few KLOC, along with a few dozen
classes and possibly database entities,
into a microservice. Communication
among these mid-sized services can
be synchronous or asynchronous. The
self-contained-systems approach, ar-
guably just a variant of microservices,
advocates including UIs, specifically
web UIs, as part of a service and sug-
gests relying on front-end integration
as much as possible.20

Each approach we just described
has merit. However, the fact that
they’re all labeled “microservices”
shows that the potential exists for
establishing a set of patterns to help
with design decisions when you’re
splitting a domain into microservices
and sizing each service.

Front-End Integration
UIs generally are a critical compo-
nent in microservice architectures.
This is mostly because they haven’t
been the focus of many of the ap-
proach’s advocates, who typically
are architects dealing with back-end
aspects. This can lead to systems in
which a monolithic front end uses a
number of back-end microservices.
Such architectures occasionally can
be perfectly fine, but they often in-
hibit the goals of microservices
because all the downsides of a mono-
lithic architecture still exist.

Modularization of front ends of
different kinds, whether web, native,
or hybrid, along with their associa-
tion as part of either microservices
or a collaborating entity, is often
badly needed to help organizations
implement a full-stack microservice
environment.

Resource Monitoring and Management
As microservice applications’ size and
complexity grow, the number and
diversity of infrastructure resources

(for example, virtual machines, con-
tainers, services, messages, thread
pools, and logs) that must be con-
tinuously monitored and managed
at runtime also increase. In addi-
tion, services might be deployed
across multiple regions and avail-
ability zones, which exacerbates the
challenge of collecting up-to-date
information about their status and
behavior. Ultimately, with the in-
creasing level of automation that cur-
rent monitoring technologies provide,
application developers might find
themselves amid a flood of monitor-
ing events, unable to make timely
management decisions.

A crucial issue here is how to
define appropriate alert thresholds
and filters, so as to notify develop-
ers whenever something goes wrong
without overloading them with re-
dundant or irrelevant information.
Even more challenging is the issue
of how to learn from past events and
actions, to better inform (and poten-
tially automate) resource manage-
ment decisions. As in many other big
data scenarios, control theory and
machine learning should play impor-
tant roles toward the development of
more scalable microservice monitor-
ing and resource management.

Failure, Recovery, and Self-Repair
Like any type of distributed system,
microservices typically are fragile.
For many reasons, such as network,
hardware, or application-level is-
sues, they might become unavail-
able, become inaccessible, or simply
fail. Owing to service dependencies,
any service can become temporar-
ily inaccessible to its consumers. In
any distributed setting, communica-
tion will fail from time to time. Re-
garding a microservice system as a
whole, communication failures will
likely occur often simply because

32	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

of the number of messages passing
between services.

To minimize the impact of partial
outages, developers must build fault-
tolerant services that can gracefully
respond to certain types of failure.
Researchers and practitioners have
proposed ways to isolate failures so
that they won’t propagate through-
out a distributed system. However,
more work is needed on automated
failure management and on self-
repair and self-healing solutions to
fix a system after a failure.

Organizational Culture
and Coordination
Having many autonomous teams
developing independently deployed
services might be a double-edged
sword. One one hand, each team
can make local decisions without al-
ways having to negotiate with other
teams. On the other hand, it in-
creases the risk of teams failing to
see the big picture—that is, to un-
derstand whether their local deci-
sions are justifiable and coherent in
the context of the system’s overall
architecture and business goals.

This risk might manifest itself in a
variety of situations, from the adop-
tion of infrastructure solutions that
are difficult to communicate and re-
use across services, to the creation of
a conflict-avoidance culture in which
teams try to fix locally problems that
are other teams’ responsibility. As a
mitigation approach, microservice
developers will need better coordina-
tion structures and models that not
only promote team autonomy but
also take into account system- and
organization-wide requirements and
goals.

Some organizations (for example,
Netflix) have adopted cross-team
regular discussions as a part of their
organizational culture. Some (for

example, Spotify) have developed
utilities that log their services and
developed technologies in a central
repository. Others (such as Uber)
decide about technologies and pro-
gramming languages outside the
teams. No matter what works for
an organization, these issues must
be dealt with as part of the organi-
zational culture to scale well to sev-
eral hundreds or even thousands of
microservices.21

Addressing the Challenges
Each of the challenges we just dis-
cussed, as well as a number of oth-
ers we didn’t, could potentially be
addressed by software- and systems-
engineering researchers in academia.
Indeed, microservices are rapidly
becoming a hot research topic, with
a growing number of published re-
search papers.22 However, those
papers have had little if any impact
on microservice practice. One pos-
sible reason is that researchers in
academia have limited access to
industry-scale microservice appli-
cations. This makes it difficult for
them to replicate and experiment
with all sorts of technical and non-
technical issues that might occur in
real-world microservice production
environments.21

To remedy this situation, we envi-
sion two distinct yet complimentary
strategies. First, there should be more
incentives for industry–academia
collaboration, on both sides. Second,
practitioners and researchers should
strive to develop and share a com-
mon microservice infrastructure that
can emulate, as accurately as pos-
sible, the production environments
of typical microservice applications.
Such an infrastructure would en-
able the microservice research com-
munity to not only tackle problems
that are more representative of the

issues practitioners face but also con-
duct more repeatable and industry-
focused empirical studies.23

In This Issue
For this theme issue, we received 26
submissions, from which four were
accepted after two rounds of re-
views. Ultimately, five articles were
selected, including one from IEEE
Software’s publication queue.

The selected articles look at
microservice development from both
engineering and reengineering per-
spectives. Generally, the processes
are organized in a stepwise fashion,
guided by quality attributes—for
example, maintainability, scalabil-
ity, and reliability. And, the pro-
cesses are supported by different
engineering approaches—for exam-
ple, domain-driven design, model-
driven engineering, and pattern- and
antipattern-based refactoring. Fur-
thermore, the articles use existing
domain models, experience reports,
and empirical studies to support
their claims.

In “Challenges of Domain-
Driven Microservice Design: A
Model-Driven Perspective,” Florian
Rademacher and his colleagues pre
sent a methodology for designing
microservice architectures based on
domain-driven design (DDD) and
model-driven development (MDD).
They discuss the challenges of ap-
plying DDD to microservice design
and propose MDD strategies to cope
with them.

In “Using Microservices for Legacy
Software Modernization,” Holger
Knoche and Wilhelm Hasselbring
describe a migration process that
decomposes an application stepwise
into microservices. This process
defines an abstract service facade,
adapts it, and uses it as a target ar-
chitecture. Knoche and Hasselbring

	 MAY/JUNE 2018 | IEEE SOFTWARE� 33

discuss their experience applying
this process in an ongoing software
modernization project that aims to
improve the evolvability of an exist-
ing legacy application.

In “From Monolithic to Micro
services: An Experience Report from
the Banking Domain,” Antonio
Bucchiarone and his colleagues re-
port on their experience migrating
a mission-critical monolithic bank-
ing application to a microservice
architecture. They show how reim-
plementing a monolithic architecture
into microservices can improve scal-
ability. They also discuss other ben-
efits of migration to microservices,
including reduced complexity, lower
coupling, higher cohesion, and sim-
plified integration.

In “On the Definition of Micro
service Bad Smells,” Davide Taibi
and Valentina Lenarduzzi investigate
how architectural antipatterns (bad
smells) support the design of cloud-
native microservice applications.
Their empirical study identified com-
mon bad practices in microservice
development, which they classified
into a catalog of 11 microservice-
specific bad smells. Microservice
developers can use these results as
guidelines for avoiding similar diffi-
culties in their projects.

Finally, in “Migrating Enterprise
Legacy Source Code to Microservices:
On Multitenancy, Statefulness, and
Data Consistency,” Andrei Furda
and his colleagues propose pattern-
based microservice refactoring that
focuses on three challenges: multi
tenancy, statefulness, and data
consistency. They explain how multi
tenancy enables different organiza-
tions with distinctive requirements
to use microservices, why stateful-
ness affects a microservice system’s
availability and reliability, and why
data consistency challenges occur

during migration of legacy code that
operates with a centralized data
repository.

The microservice technologies,
architectures, and challenges
we’ve discussed, along with

the results and experiences de-
scribed in the articles in this theme
issue, are only a small sample of
the technical, organizational, and
business decisions you need to
take into account when engineering
production-quality microservice ap-
plications at scale. Nevertheless, we
hope they provide a timely incentive
for software practitioners, research-
ers, and tool developers to further
advance this promising architec-
tural approach.

Acknowledgments
We’re grateful to the reviewers of the sub-

mitted articles for their invaluable effort

and dedication: Mohamed Abdelrazek,

Ahmed Ali-Eldin, Nour Ali, Moham-

mad Amiri, Danilo Ardagna, Paris Avge-

riou, Alberto Avritzer, Rami Bahsoon,

Rodrigo Bonifácio, Jim Buckley, Javier

Camara, Mauro Caporuscio, Flavia

Delicato, Nicola Dragoni, Gregor Engels,

Neil Ernst, Alan Fekete, Gabriel Ferreira,

Eduardo Figueiredo, Sören Frey, Andrei

Furda, Joshua Garcia, Ilias Gerostatho-

poulos, Saverio Giallorenzo, Ian Gorton,

Wilhelm Hasselbring, Ludovico Iovino,

Eunsuk Kang, Rick Kazman, Ali Khajeh-

Hosseini, Cristian Klein, Holger Knoche,

Nane Kratzke, Fei Li, Marin Litoiu,

Daniel Lucrédio, Antonio Martini, Manuel

Mazzara, Paulo Merson, Pedro Molina,

Gabriel Moreno, Henry Muccini, Irakli

Nadareishvili, Marc Novakouski, Rebecca

Parsons, Cesare Pautasso, Hongyu Pei

Breivold, Patrizio Pelliccione, Paulo Pires,

Nelson Rosa, Roshanak Roshandel,

Steve Ross-Talbot, Ivan Ruchkin, Stefan

Schulte, Frank Siqueira, Jacopo Soldani,

Damian Andrew Tamburri, Marco Tulio

Valente, André van Hoorn, Steve Versteeg,

Thomas Vogel, Coburn Watson, Jim Web-

ber, Felix Willnecker, Eoin Woods, and

Uwe Zdun. Nabor Mendonça is support-

ed partly by CNPq grants 313553/2017-3

and 207853/2017-7.

References
	 1.	O. Zimmermann, “Microservices

Tenets: Agile Approach to Service

Development and Deployment,”

Computer Science—Research and

Development, vol. 32, nos. 3–4,

2017, pp. 301–310.

	 2.	J. Lewis and M. Fowler, “Micro

services,” 25 Mar. 2014; martinfowler

.com/articles/microservices.html.

	 3.	N.M. Josuttis, SOA in Practice: The

Art of Distributed System Design,

O’Reilly, 2007.

	 4.	R.T. Fielding, “Architectural Styles

and the Design of Network-Based

Software Architectures,” doctoral

diss., Univ. of California, Irvine, 2000.

ON USING THE TERM
“MICROSERVICE”

Throughout this theme issue, we decided to use “microservice” instead of
“microservices” when the term functions as an adjective (for example, “micro
service architecture”). This usage aims to provide consistency throughout the

articles and is in line with some key publications in the field.

34	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

	 5.	C. Pautasso et al., “Microservices in

Practice, Part 1: Reality Check and

Service Design,” IEEE Software,

vol. 34, no. 1, 2017, pp. 91–98.

	 6.	C. Pahl, “Containerization and the

PaaS Cloud,” IEEE Cloud Comput-

ing, vol. 2, no. 3, 2015, pp. 24–31.

	 7.	L. Bass, I. Weber, and L. Zhu,

DevOps: A Software Architect’s

Perspective, Addison-Wesley, 2015.

	 8.	D. Farley and J. Humble, Continuous

Delivery: Reliable Software Releases

through Build, Test, and Deployment

Automation, Addison-Wesley, 2010.

	 9.	S. Newman, Building Microservices,

O’Reilly, 2015.

	10.	J. Gray, “A Conversation with

Werner Vogels,” ACM Queue, vol. 4,

no. 4, 2006, pp. 14–22.

	11.	A. Cockcroft, “The Evolution of

Microservices,” presentation at 2016

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

POOYAN JAMSHIDI is a postdoctoral

research associate at Carnegie Mellon

University’s School of Computer Science.

His research interests are at the intersec-

tion of software engineering, systems, and

machine learning. Jamshidi received a PhD

in computing from Dublin City University.

Contact him at pjamshid@cs.cmu.edu.

JAMES LEWIS is a principal consultant

at ThoughtWorks, where he specializes in

service-oriented architecture (SOA) and

distributed systems. His favorite topics

include domain-driven design, SOA and

the future of the web, and agile adoption

patterns and lean thinking. Lewis received

an MSc in computer science from the

University of London. He’s a member of

IEEE and ACM. Contact him at jalewis@

thoughtworks.com.

CLAUS PAHL is an associate professor

of computer science at the Free University

of Bozen-Bolzano, where he heads the

Software and Systems Engineering Group.

His research interests include software en-

gineering in service and cloud computing,

specifically migration, architecture speci-

fication, dynamic quality, performance

engineering, and scalability. Pahl received

a PhD in computing from the University of

Dortmund. Contact him at cpahl@unibz.it.

STEFAN TILKOV is a cofounder of and a

principal consultant at INNOQ, a technology-

consulting company. He has been involved

in designing large-scale distributed

systems for more than two decades. Tilkov

received a BSc in computer science from

Berufsakademie Stuttgart. Contact him at

stefan.tilkov@innoq.com.

NABOR C. MENDONÇA is a full profes-

sor of computer science at the Univer-

sity of Fortaleza and a visiting scholar at

Carnegie Mellon University’s School of

Computer Science. His research interests

include software engineering, distributed

systems, and cloud computing. Mendonça

received a PhD in computing from Imperial

College London. He has received Microsoft

Research’s Software Engineering Innova-

tion Foundation Award. He’s a member of

IEEE, ACM, and the Brazilian Computer

Society. Contact him at nabor@unifor.br.

	 MAY/JUNE 2018 | IEEE SOFTWARE� 35

ACM Learning Webinar, 2016;

learning.acm.org/webinar_pdfs

/EvolutionOfMicroservices

_WebinarSlides.pdf.

	12.	E. Evans, Domain-Driven Design:

Tackling Complexity in the Heart of

Software, Addison-Wesley, 2003.

	13.	A. Balalaie, A. Heydarnoori, and P.

Jamshidi, “Microservices Architec-

ture Enables DevOps: Migration to

a Cloud-Native Architecture,” IEEE

Software, vol. 33, no. 3, 2016, pp.

42–52.

	14.	C. Rosenthal et al., Chaos Engineer-

ing: Building Confidence in System

Behavior through Experiments,

O’Reilly, 2017.

	15.	B. Burns and D. Oppenheimer, “De-

sign Patterns for Container-Based

Distributed Systems,” Proc. 8th

USENIX Workshop Hot Topics in

Cloud Computing (HotCloud 16),

2016; www.usenix.org/system/files

/conference/hotcloud16/hotcloud16

_burns.pdf.

	16.	M. Roberts, “Serverless Architec-

tures,” 4 Aug. 2016; martinfowler

.com/articles/serverless.html.

	17.	W. Morgan, “What’s a Service Mesh?

And Why Do I Need One?,” 25 Apr.

2017; buoyant.io/2017/04/25

/whats-a-service-mesh-and-why-do

-i-need-one.

	18.	P. Calçado, “Pattern: Service Mesh,”

3 Aug. 2017; philcalcado.com/2017

/08/03/pattern_service_mesh.html.

	19.	A. Cockcroft, “Cloud Trends:

Principles, Evolution, and

Chaos ...,” presentation at GOTO

Copenhagen 2017, 2017; gotocph

.com/5/sessions/185/slides.

	20.	Self-Contained Systems: Assembling

Software from Independent Systems;

scs-architecture.org.

	21.	M. Ranney, “What I Wish I Had

Known before Scaling Uber to 1,000

Services,” presentation at GOTO

Chicago 2016, 2016; gotocon.com/dl

/goto-chicago-2016/slides/MattRanney

_WhatIWishIHadKnownBeforeScaling

UberTo1000Services.pdf.

	22.	C. Pahl and P. Jamshidi, “Micro

services: A Systematic Mapping

Study,” Proc. 6th Int’l Conf. Cloud

Computing and Services Science

(CLOSER 16), 2016, pp. 137–146.

	23.	C.M. Aderaldo et al., “Benchmark

Requirements for Microservices

Architecture Research,” Proc. 1st

Int’l Workshop Establishing the

Community-Wide Infrastructure for

Architecture-Based Software Eng.

(ECASE 17), 2017, pp. 8–13.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

