
4	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

FROM THE EDITOR
Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

IEEE Software 	 To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement	 the developers and managers who want to keep up with rapid technology change.

Being a Software
Developer
Diomidis Spinellis

BEING A PROFESSIONAL software
developer is tough.” This is what I
told a manager lamenting the large
number of university graduate job
applicants who couldn’t pass his
company’s coding tests. Program-
mers develop the most complex
human artifacts by manipulating
symbols that are defined through
layers upon layers of abstraction.
The resulting instructions are then
processed at a rate of billions per
second—often in a nondeterministic
fashion—on atom-scale processors,
which become 10 times more power
ful every five years. A computer sci-
ence, informatics, or related degree
can only scratch the surface of the re-
quired knowledge and skills. A spe-
cialized software engineering degree
can go into greater depth but still
can’t offer all the required exper-
tise and experience. Consider that it
takes many years before a medical-
or flying-school graduate is allowed
to perform open-heart surgery or fly
an Airbus A380, respectively.

Because work on production code
quickly becomes very demanding, if
you want to be a professional devel-
oper, you’ll need to continually invest

substantial time to acquire highly
specialized knowledge and develop
diverse skills. A university can kindle
your passion and provide incentives
to expand your horizons, and your
employer may support specialized
training. But in the end, becoming
a professional software developer is
your decision and responsibility.

Knowledge
In the original version of Bloom’s
cognitive-domain taxonomy of
learning, the first element was
knowledge.1 A university degree
will give you significant theoretical
knowledge that’s required for writ-
ing software. This includes choos-
ing appropriate data structures and
algorithms, understanding how the
computer’s architecture and OS af-
fect performance, using appropri-
ate programming-language features,
and applying software engineering
methods. Many curricula typically
will also cover context-specific spe-
cialized knowledge, such as human–
computer interaction, computer
graphics, information security and
management, networking, and in-
telligent systems. What a university

program typically can’t offer is spe-
cialized domain know-how (e.g.,
computing applications in civil or
aeronautical engineering) and com-
prehensive knowledge of software
construction tools.

As a professional developer, you
need to advance from the sandbox
development tools that are often
used for teaching programming and
become productive in a full-featured
IDE and a powerful general-purpose
code editor. Examples of such tools
include Eclipse, Visual Studio, Vim,
Atom, and Emacs.

You’ll also need in-depth knowl-
edge of a general-purpose program-
ming language, such as Java or Go,
and an application development
framework or API, such as .NET.
By the time you’ve become accus-
tomed with all of a language’s fea-
tures, you’ll have gathered enough
confidence to be productive in every-
day tasks. Similarly, being somewhat
familiar with all the areas covered
by a framework will allow you to
find and choose its appropriate fea-
tures for each situation.

Finally, you’ll also need to be
thoroughly acquainted with a wide

FROM THE EDITOR

	 JULY/AUGUST 2018 | IEEE SOFTWARE � 5

set of software construction tools.
These include tools for build auto-
mation, configuration management,
debugging, testing, static analysis,
continuous integration, and pack-
age management. You should be
able to not only configure and run
them to cover specific requirements
but also grasp the principles be-
hind their operation. How does Git
store revisions? What’s the transitive
order of build or package dependen-
cies? Why do false positives and false
negatives arise in static analysis?
What’s a data breakpoint? Given the
variety of ad hoc software construc-
tion tasks you’ll be facing regularly,
you’ll also need mastery of some
general-purpose toolsets, such as the
Unix command-line tools or Python
and its modules.

Cognitive Skills
In contrast with knowledge, most
of the cognitive skills you’ll require
as a software developer can only
be indirectly taught at a university.
Some of them, such as those related
to critical thinking, are even honed
in much earlier life stages. Still, you
can always improve your weak areas
through practice, introspection, and
training. Unsurprisingly, a develop-
er’s key cognitive skills include all
the remaining elements in Bloom’s
taxonomy: application, comprehen-
sion, analysis, synthesis, and evalua-
tion.1 Here are some examples.

Applying your theoretical knowl-
edge means generalizing specific
software requirements (say, the as-
sociation between customers and
products) into the correspond-
ing concepts (here, modeling a
many-to-many relationship). It might
also mean applying quantitative
reasoning to evaluate things such
as software reliability, the user ex-
perience, or system performance.

(How will a 5 percent increase in a
lock’s contention affect transaction
latency?) Other common applica-
tions of your hard-earned theoretical
knowledge involve choosing appro-
priate abstractions (e.g., the use of
implementation inheritance, inter-
face inheritance, or parametric poly-
morphism); taming complexity by
structuring code; and applying exist-
ing methods, tools, APIs, and algo-
rithms to solve specific problems.

Regarding comprehension, you
must be able to interpret exist-
ing code sequences, extend them
to match new requirements, and
refactor them to reduce technical
debt. You must convert specifica-
tions into code, summarize code as
concise comments, and explain it to
your colleagues. You must also pro-
vide lucid narratives and examples
of specified processing and express
them both in clear writing and as
integration and unit tests.

In your software development
work, you’ll require analytical skills
to infer possible causes of bugs
and performance issues, to subdi-
vide a complex system into more
manageable elements, to prioritize
requirements, and to classify mind-
numbing special cases into broader
categories. Analytical skills also
come in handy when you’re com-
paring competing software or user
interface designs for implementing
some functionality, in order to select
the most appropriate one.

Hand-in-hand with analytical
skills, which help you break big-
ger problems into smaller pieces, go
synthesis skills, which combine ex-
isting fragments into more valuable
aggregates. A prime example here
is the ability to design a large com-
plex system as a composition of sev-
eral existing and bespoke software
components. Other applications of

CONTACT
US

AUTHORS

For detailed information on submitting
articles, access www.computer.org
/software/author.htm.

LETTERS TO THE EDITOR

Send letters to

	 Editor, IEEE Software
	 10662 Los Vaqueros Circle
	 Los Alamitos, CA 90720
	 software@computer.org

Please provide an email address or daytime
phone number with your letter.

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org.
Please specify IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org.

MISSING
OR DAMAGED COPIES

help@computer.org.

REPRINTS OF ARTICLES

For price information or to order reprints,
email software@computer.org
or fax +1 714 821 4010.

REPRINT PERMISSION

To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

FROM THE EDITOR

6	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

synthesis include low-level code con-
struction by utilizing language fea-
tures and APIs, deriving a hypothesis
regarding an underlying fault from
its diverse manifestations, planning
a Scrum iteration, or coming up with
a new algorithm.

Finally come evaluation skills. As
a developer, you’ll need to perform
code reviews; identify technical debt;
assess designs, test methods, and
processes; and recommend the most
appropriate solutions among a wide
variety of technical alternatives.

Interpersonal Skills
Software development relies enor-
mously on interpersonal skills be-
cause in most cases it combines
extensive teamwork with consider-
able individual leeway and respon-
sibility. These skills are also rarely
formally taught at a university.

First in this area come skills as-
sociated with collaboration. To work
effectively as part of a team, within
your organization or with your cus-
tomers, you need to be able to receive
and provide constructive feedback,
to show appreciation for the work
of others, to actively listen to them,
and to collaborate remotely. Often
you’ll receive criticism—sometimes
brutally honest—through code re-
views, testing, and customer feed-
back. You must be adept in using
this input to improve your designs
and your code without taking it per-
sonally. You also need to be able to
work smoothly within an organiza-
tion’s hierarchy: to be managed and
to manage others.

Then comes the work ethic.
This involves professionalism, re-
spectfulness, dependability, a positive
attitude, and adherence to the work-
place’s and the software community’s
etiquette. You must be able to provide
honest, accurate schedule estimates

and dependably deliver on them. You
must appreciate and respect your or-
ganization’s conventions regarding
code and development processes as
well as common work ownership.
More broadly, you must contribute
back to the professional and scien-
tific communities through Q&A
forums, open source projects, confer-
ence presentations, and publications.

As a developer you’ll often be re-
sponsible for considerable aspects of
your organization’s software. This
requires self-confidence to accept
those responsibilities, persistence to
deliver what’s required from you,
and thoroughness and perfectionism
to maintain high quality. Remember:
a misplaced bracket can break an en-
tire build; a missing error check can
destroy an entire organization.

Being a professional in a rapidly
evolving field means you need to
continually invest in learning new
skills, technologies, practices, and
tools. Be on the lookout for them
by reading professional magazines
(including this one), attending con-
ferences, studying classic books
as well as new ones, and exam-
ining other people’s code (open
source software makes excellent
such material). Look for aspects
of your and your organization’s
work that can be improved, and
be ready to learn and experiment
with new methods to address the
shortcomings.

Cruelly, complex skills can quickly
deteriorate. This is why even pri-
vate pilots are required to per-
form a minimum of three landings
within 90 days and pass a bien-
nial flight review to keep their
license current. For you as a pro-
grammer, this means continuing to
program—at work or as a hobby—
even as you take on more manage-
ment responsibilities.

EDITORIAL
STAFF
Senior Editor/Magazine Contact:
Dennis Taylor
Publications Coordinator:
software@computer.org
Multimedia Editor: Erica Hardison
Cover Artist: Andrew Baker
Director, Products & Services:
Evan Butterfield
Publisher:
Robin Baldwin
Manager, Editorial Content:
Brian Brannon
Senior Advertising Coordinator:
Debbie Sims, dsims@computer.org

CS PUBLICATIONS BOARD
Greg Byrd (VP for Publications), Erik Altman,
Ayse Basar Bener, Alfredo Benso, Robert
Dupuis, David S. Ebert, Davide Falessi,
Vladmir Getov, Avi Mendelson, Dimitrios
Serpanos, Forrest Shull, George K.
Thiruvathukal

CS MAGAZINE OPERATIONS
COMMITTEE
George K. Thiruvathukal (Chair), Gul Agha,
M. Brian Blake, Irena Bojanova, Jim X. Chen,
Shu-Ching Chen, Lieven Eeckhout,
Nathan Ensmenger, Sumi Helal, Marc
Langheinrich, Torsten Möller, David Nicol,
Diomidis Spinellis, VS Subrahmanian,
Mazin Yousif

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

FROM THE EDITOR

	 JULY/AUGUST 2018 | IEEE SOFTWARE � 7

Building and maintaining all
this knowledge and these
diverse skills seems like a

tall order. This is the entry price for
a hugely rewarding profession. A
profession through which you can
improve the lives of countless individ-
uals, the effectiveness of businesses,
and the functioning of governments.
A profession that lets you use your
brain and a keyboard to make our
world a better place.

Reference
1.	B.S. Bloom et al., Taxonomy of

Educational Objectives: The Classi-

fication of Educational Goals. Hand-

book I: Cognitive Domain, David

McKay, 1956.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

got

Find out more and get involved:
cybersecurity.ieee.org

