
0740 -7459 / 19©2019 I EEE JANUARY/FEBRUARY 2019 | IEEE SOFTWARE 91

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

IN THE EARLY days of software en-
gineering, Edsger Dijkstra warned us
not to let the size and complexity of
our programs cause us to lose “intel-
lectual control” due to the limited
nature of our minds. To my knowl-
edge, he never defined precisely what
intellectual control was. Our soft-
ware today is staggeringly larger
than the programs of the 1960s, so
does that mean we have it under our
intellectual control, or did we find
ways to make progress without Dijk-
stra’s high standards?

I see signs that we have some soft-
ware that is under intellectual con-
trol and other software that is not.
In this column, I’m going to discuss
how we can recognize these two
categories, what happens when en-
gineers on a project have different
attitudes about intellectual control,
some advice on when we probably
should insist on it, and some ideas
about how we achieve it.

It’s difficult to have a conversa-
tion about something as abstract as
control over programs. To ease into
it, we can use a metaphor from Rich
Hickey’s presentation called “Simple
Made Easy” (github.com/matthiasn
/talk-transcripts/blob/master/Hickey_
Rich/SimpleMadeEasy.md). He asked
us to imagine driving a car on a road

with guardrails. In this metaphor, the
guardrails are tests and driving the
car is us writing programs. He then
wondered if it’s OK to successfully
arrive at our destination after hitting
the guardrails during the journey. His
audience laughed because having a
car under control means we are able
to drive without hitting the rails.

The laughter had a nervous qual-
ity to it because we often write code
that ends up breaking the tests, so
perhaps we don’t really have as much
control as we thought. Are we mon-
keys at typewriters writing random
programs hoping one will eventually
pass the tests? No, we have some ex-
pectation that this code will do what
we want. Failing tests are a signal
that we didn’t understand the pro-
gram as well as we needed to.

If we’re honest with ourselves, the
way we write software today has a
little bit of that monkey quality. We
don’t get everything straight in our
minds before typing, but neither are
we just throwing programs at the tests
without thinking. In my experience,
we use a proposed change to a pro-
gram as a little hypothesis, “I think
perhaps this is the way things work,”
and then run the tests to get feedback
on that hypothesis. Over time, we
build up a theory in our heads of how
the program works. That theory gives
us intellectual control.

Let me contrast intellectual con-
trol with another kind of control

you may recognize. Imagine that you
start looking at an existing codebase
with tests, one where the original
authors have departed, so you can-
not ask them questions. You develop
hypotheses about how the code
works and gather evidence by seeing
whether or not your code changes
break the tests.

But this time, you never get that
“Aha!” moment that results in a gen-
eral understanding of the program.
Your hypotheses never add up to a
theory. You are still making forward
progress because you can try several
things until you find one that keeps the
tests passing, but you keep hitting those
guardrails and they are the primary
things keeping you from failure.

My intent is to reveal these two
approaches to building software,
which I’ll call intellectual control and
statistical control, so that we can have
a discussion about their natures and
when we should use one or the other.
To some extent, I’ve exaggerated
the distinction between them so that
we can see things more clearly. We
rarely find ourselves fully invested in
one approach or the other. More com-
monly, there are parts of the code that
mostly make sense to you and other
parts where you’re mostly relying on
the tests to keep you on track.

You can have enough control
over the car that you don’t hit the
guardrails or you can lack control
and hit the rails a few times along

Intellectual Control
George Fairbanks

Digital Object Identifier 10.1109/MS.2018.2874294
Date of publication: 8 January 2019

THE PRAGMATIC DESIGNER

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

the journey. Both get you to your
destination. In software develop-
ment, sometimes we are able to ob-
tain intellectual control because we
have built up a theory of the program
and, therefore, are generally able to
write code without breaking the tests.
Other times, we cannot find that gen-
eral theory, and so we’re relying on
the tests to give us statistical confi-
dence that it seems to be working.

But why call it statistical control?
Another of Dijkstra’s famous sayings
is that tests can show the presence of
bugs but not their absence. Tests are a
sampling of the output space, so pass-
ing tests provide a statistical confidence
that the program behaves as expected.
Passing tests don’t mean that the theory
in my head is right, just that there’s
no evidence that it’s wrong.

From this perspective, we can see
that intellectual control comes from
ideas in the heads of software devel-
opers but not the code or tests. The
same is true of the car and the driver,
where the driver may have control or
not. How do we know if someone
is in control of the code? If they are
able to write new code and rarely
break the tests, that’s a good sign of
control. If they break the tests doz-
ens of times first, that’s bad.

Recognizing
Intellectual Control
Dijkstra’s appeal to math and proofs
has the benefit of being an objective
standard that indicates control, but
proofs have been hard to achieve.
Short of that, what other signs can
we look for that show developers
have intellectual control over their
code? Intellectual control comes
from your mind, so we need to find
external evidence of something that
cannot be seen directly.

One sign is a specification. Before
proving a program correct, you need

to have thought about it sufficiently
clearly that you can state what you
think it should do. Just stating that
abstractly is evidence that you have
some amount of intellectual con-
trol. That clear statement is a neces-
sary ingredient of a proof. Dijkstra
would not be satisfied, but I see it
as evidence of intellectual control.
This specification probably isn’t a
big document full of “the system
shall” statements.

Another bit of evidence is the
user-defined types that the program
manipulates. Few programs operate
solely on built-in types like strings,
integers, and lists. Instead, the pro-
grammers invent types that reveal
their thinking about the problem
and solution. A rich and expressive
set of types that can be operated on
simply indicates insight and control.

Simplicity is evidence of intel-
lectual control. Blaise Pascal wrote,
“I have made this longer than usual
because I have not had time to make
it shorter.” It’s possible to just get
started on an activity and barrel
through to the end, but that yields
something verbose and convoluted
rather than simple and comprehen-
sible. Tony Hoare said it best in his
Turing Award lecture,1 “There are
two ways of constructing a soft-
ware design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies.”

There are several techniques com-
monly used to simplify software de-
signs. If you see these, they are signs
that the authors have intellectual
control: separation of the problem
and solution concerns, explicit data
structure invariants, operations with
clear contracts, minimization of the
state space, attention to failure con-
ditions, and a suitable architecture.

I’ve found that developers with
control over the code have the abil-
ity to give impromptu “chalk talks”
that explain the system. Much like a
CAD tool can generate any crosscut
of a building design, those develop-
ers can respond to questions that
crosscut the software design and
provide off-the-cuff explanations of
how the system does, or does not,
handle it. Explanations of the form
“here’s why and how this exists” are
better evidence of control than just
statements of what exists.

Mixing Statistical and
Intellectual Control
Inevitably, code that we understand
will coexist with code that we don’t,
and developers who are striving for
intellectual control will sit next to de-
velopers who are content with the sta-
tistical control of passing tests. Over
time, does one approach dominate?

Imagine you are on a team of pro-
grammers that relies mostly on the
statistical control of passing tests.
Are you able to insist on intellectual
control of the code that you write?
Probably not, either because your
code is built on other code that you
don’t understand or because the team
has collective code ownership that
will degrade your control over time.

It might play out like this: one of
your teammates is confronted with a
tricky programming challenge. With
tight deadlines, he codes up something
that covers the cases seen in practice so
far, but there is no explanation of why
it does what it does. Then he turns his
attention to the next feature. Since you
hope to keep intellectual control over
the system, you try to build up an un-
derstanding of that module. But it’s
not a job of recovering what’s there,
it’s a job of inventing a theory that ex-
plains the operation of the code and
possibly refactoring the code to better

THE PRAGMATIC DESIGNER

 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE 93

reveal that theory. That’s a tough job
that’s hard to justify when the stan-
dard being applied is passing tests and
statistical control.

It’s easy for statistical control to
dominate a project. In my experience,
once some of the team embraces sta-
tistical control via tests, that will be-
come the dominant form of control in
the system. There is an inherent asym-
metry in the two approaches where
test-controlled modules have no prob-
lems working with intellectually con-
trolled modules, but not the reverse.
Those who hold intellectual control
dear still want test coverage, but
those who only desire test coverage
don’t miss the intellectual control, or
at least not enough to pay for it.

Faced with the volume of code
today, some people see intellectual
control as an unaffordable luxury.
Extensive testing does seem to work
pretty well for the kinds of software
we build and the quality targets we
are trying to hit. And programmers
change jobs, taking their under-
standing of the software away with
them. So perhaps the idea of intel-
lectual control is elegant but quaint,
suitable for bygone days of punch
card programming but not for mod-
ern Internet-scale projects.

When to Insist on
Intellectual Control
Let’s say that you are like me in that
intellectual control is appealing but
you recognize that it can be expen-
sive. Where should you invest in it?
The biggest win is in shared code. I
have programed in Java since it was
released, but I was shocked and de-
lighted to start using the Guava li-
brary (github.com/google/guava)
about five years ago. This polished
gem represents a high point of intel-
lectual control because few areas in
computer science have had as much

attention as collection libraries and
functional programming idioms.
The more widely used the code is,
the easier it is to justify the invest-
ment on pure economics. You might
also choose intellectual control when
other risks are high.

One of the ways you can find ar-
eas to bring under intellectual con-
trol is to listen to what your module
dependency graph is telling you.
Since core libraries don’t depend on
your application modules, you can
get them under intellectual control
without fear that they revert to sta-
tistical control. But the reverse is
also true: using statistical control
over modules at the bottom of the
dependency graph may make it hard
to get intellectual control anywhere.

I find it valuable to pay particular
attention to the code at the bound-
aries of a system such as the code
that accepts requests from the out-
side world or loads/stores data from
persistent storage. Any other calcu-
lations or conclusions reached by the
system depends on understanding
what happens at those boundaries:
garbage in, garbage out. So if you
want intellectual control anywhere,
make sure you have it at the bound-
ary of your system and at the leaves
of your dependency graph.

Benjamin Franklin advised that
“A stitch in time saves nine.” It’s
cheaper over time to keep intellec-
tual control than it is to lose then re-
cover it. Still, the investment in that
stitch can be hard to argue for be-
cause nothing bad has happened yet
and the tests are still passing.

It’s worth mentioning that sophis-
tication isn’t free. If your team wants
to have an efficient process that reli-
ably delivers quality code in quick it-
erations, you will likely need to invest
in supporting practices. I often think
of how many countries have built

infrastructure to deliver tap water
but cannot keep that water healthy
because there are other support-
ing practices they have yet to mas-
ter. Similarly, it’s easy for a team to
write a script that pushes the code to
production every day but far harder
to have the supporting processes that
ensure the push is of good quality. As
you raise your standards for feature
development velocity or code qual-
ity, you may find yourself investing
in intellectual control as a support.

How to Achieve Control
So, how do we make that investment?
Over time, the specific advice has
differed, but there is surprising con-
sistency across the decades.

In the 1960s and 1970s, Edsger
Dijkstra and Tony Hoare advised
mathematical rigor as a path to in-
tellectual control. Today, we rarely
prove that whole programs meet
a full specification but static analy-
sis tools are common, scouring our
code and letting us know if a null
reference might be slipping past our
defenses or if our user-defined types
don’t fit together just right. And Ber-
trand Meyer found an economical
way to reap much of the benefit of a
proof with design by contract.

In the 1970s and 1990s, Fred
Brooks reflected on his experiences
guiding software development at
IBM and pointed out the benefits of
coherent designs from the mind of a
single designer who was freed from
other distractions. In the 1990s and
2000s, Paul Graham continued this
theme, sharing his experiences from
the Lisp community with bottom-
up des ign and adv is ing how to
hold a program in your head to
achieve control.

In the 2000s and 2010s, func-
tional programming has become
mainstream, bringing ideas such as

THE PRAGMATIC DESIGNER

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

immutable data structures and pure
functions into all kinds of languages,
often enforced by the compiler. I see
a connection between Brooks’ drive
for conceptual integrity and Rich
Hickey’s advice on how to find sim-
plicity in design.

Across the decades, formalism has
helped us think about our designs,
and it’s increasingly accessible. Where
Dijkstra would have used a pencil
and paper to formalize his thinking
about a program, a programmer to-
day following best practices might
build abstractions bottom up with

clear contracts and invariants, struc-
ture the overall system according to
architectural patterns, and use the
compiler and static analysis to ensure
each of the user-defined types fit to-
gether as expected.

M y intent with this column
is to make it easier to talk
about intellectual con-

trol and connect it with practices
we already use on our projects. It’s
difficult to talk about the kind of
control we have over our software

and more difficult still to talk about
different approaches like intellec-
tual control and statistical control.
I’m thankful for Rich Hickey’s met-
aphor of driving a car without hit-
ting the guardrails as it brings this
topic to life.

Software is everywhere, and it’s
a common lament that it’s big and
buggy. As the software gets bigger
and bigger, it’s more and more tempt-
ing to settle for statistical control
with tests. Nobody wants to write
buggy software, but many don’t
know another way or how to avoid
analysis paralysis. You can choose
a few places in your code, build up
your understanding to gain intellec-
tual control, and share that under-
standing with your team. Soon you
will be driving your car without fear
of hitting the guardrails.

Reference
 1. C. A. R. Hoare, “1980 Turing Award

lecture,” Commun. ACM, vol. 24,

no. 2, pp. 75–83, Feb. 1981.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google.

Contact him at gf@georgefairbanks.com.

also arisen in the form of conference
participants who will now use RE
Cares artifacts in their courses and
as datasets for research. Based on the
Banff experience, we believe that RE
Cares is a concept that can, with addi-
tional improvement and with proper
preparation, be turned into a success-
ful fixture at future RE, and perhaps
software engineering, conferences.

Our RE community saw and
seized an opportunity to
“do good” while attend-

ing a scientific conference. It was a

success per our surveyed partici-
pants [they scored it a 1.4 of 5 as a use-
ful undertaking (where 1 is strongly
agree and 5 is strongly disagree); see
also quotes from participants’ feed-
back at https://wsrecares.wixsite
.com/recares/quotes]. It can be im-
proved; we have identified such op-
portunities. We will undertake this
event again. Are you interested in as-
sisting us or in trying an RE Cares
event at your conference? Please con-
tact us at hayes@cs.uky.edu and help
spread the idea that the “software
types” of the world can give a little
something back.

Reference
 1. G. Ruhe, M. Nayebi, and C. Ebert,

“The vision: Requirements engineer-

ing in society,” in Proc. Int. Conf.

Requirements Eng. (RE), 2017, pp.

478–479.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

REQUIREMENTS (continued from page 90)

