
98	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0740 -7459 / 19©2019 I EEE

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

SOFTWARE
ENGINEERING RADIO

Robert Blumen: Today we’re going
to be talking about distributed trac-
ing. First, I’d like to talk about trac-
ing in single instance and then we’ll
move on to look at the complexities
of a distributed system. To start, what
is tracing?

Ben Sigelman: The industry has used
the word tracing to refer to things hav-
ing some commonality but are quite
different, like stack traces (which have
that word trace in them), kernel traces
like DTrace, and distributed tracing
systems like Dapper and Zipkin.

In all of monitoring and observ-
ability, there are fundamentally two
types of data: event data and statisti-
cal data. Tracing data are definitely
event data.

Kernel tracing events take a couple
of nanoseconds and happen very fre-
quently. In DTrace, e.g., you write a
script (that looks like an awk script)
that takes as input a high-frequency
event stream and generates useful sta-
tistics. Stack traces trace up the stack.
There is nothing mysterious about that,
but it’s a totally different thing than
kernel tracing or distributed tracing.

In distributed tracing, you’re look-
ing at a single logical transaction in
a [distributed] system.

Let me clarify. Statistical data could be
things like amount of memory used,
CPU load; whereas event data consist
of particulars about what happened
in each case. Is that the difference?

Event data has a time stamp indicat-
ing when the event occurred. CPU
level is an aggregate. It is a statistical
summary of what happened during
a time period, e.g., 75% of the time
your CPU is in a runnable state. Other
common statistics would be things
like event rates and latency percentiles.

We had another episode of Software
Engineering Radio dealing with
logging. This sounds like it might

Ben Sigelman on
Distributed Tracing
Robert Blumen

Digital Object Identifier 10.1109/MS.2018.2880598
Date of publication: 8 January 2019

From the Editor

We bring you this month one of my own shows, Software Engineering Radio Episode

337, featuring guest Ben Sigelman. Sigelman is the cofounder and chief executive officer

of LightStep, where he is building reliability management software, and a coauthor of

the OpenTracing project. We discuss tracing in general and distributed tracing, which

involves the propagation of tracing across process boundaries in a distributed system.

The discussion covers the basics of tracing, how distributed tracing is different, the

instrumentation required to collect tracing data, what is collected and how, where the

data go, and use cases for the data itself, including monitoring, analytics, and capacity

planning. The excerpt presented here contains about one half of the interview, with the

remaining half available for download from our website or via RSS.—Robert Blumen

SOFTWARE ENGINEERING RADIO

	 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE � 99

be similar but different. What is the
distinction?

Logging is very much on the side of
event monitoring. That word is also
really problematic in that it means dif-
ferent things to different people, but I
think logging has come to mean: event
monitoring where the cost of central-
ization is reasonable. You pay to cen-
tralize your logs and then search over
them. It would be great if you could
get every single system call into your
single combined [log aggregator], but
you can’t because it’s too expensive.
So you don’t consider that part of your
logging strategy.

Could you drill down into more de-
tail about the thing we call tracing?
What differentiates that from other
types of events?

If we went back 15, 20 years trac-
ing meant automatic instrumentation
of things that usually happen at the
kernel boundary. Every system call
could be traced, or every function
call, whereas logging used to imply
logging statements added by pro-
grammers to their code.

Then tracing is a cross-cutting con-
cern, where something can intercept
the normal operation of your system
and collect event data from that?

Yes, and this gets very blurry when
you start talking about more modern
architectures, but if we’re talking
about the historical context, I think
that’s totally accurate.

In a modern system, what are some
of the primary use cases for tracing?

Modern means that you’re building
software that involves many teams who
are working in concert, developing

services, serverless, or micro services.
In that kind of system, tracing is mov-
ing up the stack considerably because
the pain point people are having is also
moving up the stack considerably.

If you’re dealing with a distributed
architecture, the questions you’re trying
to answer are very primitive—things
like: “This transaction was slow,” or,
“This transaction had an error. I have
no idea what happened. I have no idea
what services it touched. I have no idea
what happened in those services.” You

are trying to figure out which services
were involved. You would be thank-
ful if you could get to the point where
you are trying to understand what
happened at the system call level. And
that’s a very different question.

Distributed tracing lets you see
across system boundaries. If service
A calls B, calls C, calls D, and D is
having a bad day, it affects service A.
[With distributed tracing], you can
figure that out very easily. And that’s
a profound thing if you didn’t have
it before.

If you’re either trying to figure out
what happened in one case, or why
something taking as long as it did, then
tracing is primarily a troubleshooting
or debugging tool. Is that accurate?

I think the answer to that is changing.
Historically, distributed tracing has
been used for performance analysis
and for root cause analysis. Making

performance improvements, you want
to focus your energies where it’s going to
have an effect on the business.

When I was at Google, before we
deployed [a system], we had people
spending six months on 20% perfor-
mance improvements that were off
the critical path for the end user. User
latency was not affected by these per-
formance improvements because they
were the wrong place. It made no dif-
ference. Distributed tracing can help
you avoid that failure mode.

The other use case is you’re woken
up at three in the morning. You know
that something bad is happening,
and you need to figure out where as
quickly as possible. If you are work-
ing in a distributed environment, a
tracing system can be really helpful
with that. In both cases you’re actually
looking at individual traces to make
these assessments.

Distributed tracing data have a
fount of knowledge about how these
distributed systems interact. From
that we can obtain higher-level in-
sights for developers, operators, and
management to better understand
these systems. It’s going to be a lot
more powerful than looking at indi-
vidual traces in a UI.

You mentioned critical path analy-
sis. Explain what that is.

In a modern environment, there is a
lot of concurrency. You do things in

Making performance improvements,
you want to focus your energies
where it’s going to have an effect
on the business.

SOFTWARE ENGINEERING RADIO

100	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

parallel because if you called every-
thing in serial, it would take days to
get back to users when you have hun-
dreds of services.

If you call out to five services in
parallel, and you wait for all of them to
return, the one that comes back last
delays the end user. The one that comes
back last is on the critical path. You
need to understand what the laggard
was and focus your analysis there. It’s
an easy thing to if you have the struc-
tural information, which distributed
traces do.

A good tracing system should
help you surface the critical path au-
tomatically so you don’t waste time
analyzing things that aren’t holding
up the end user with a transaction at
the top of the stack.

Operations may not be aware of all of
the changes in a system that were de-
ployed in the last week. Is tracing a good
reverse engineering tool for operations?

Like for finding out what services call
A or are called by B?

I would argue it’s the best reverse
engineering tool. That’s why people
get excited about it. The value prop
is when you need the information it’s
right there in front of you. That’s al-
most the definition of what it’s doing.

We did another show about latency
and latency outliers. Latency outliers
are far more important than average
latency for human perceived respon-
siveness, but these are events by defi-
nition don’t occur very often. Can
distributed tracing identify the 0.1%
worst performing requests?

Absolutely, especially if the tracing sys-
tem is designed to focus its energies in
those areas. In my experience, if you
have a system where latency degrades
without a software release, almost all
of the time it is because something is

overloaded. Most sudden production la-
tency regressions are due to throughput.

You have some kind of overwhelm-
ing throughput in a system, and that
creates a bottleneck. In queuing the-
ory, if there is a bottleneck that is re-
flected in high latency. Now you need to
understand where that load came from.
For example, if you have a storage sys-
tem and the CPU is getting really hot,
it’s probably because of consolidation
and batching. Understanding that
requires looking at all of the other re-
quests that it is serving.

Requests can be thought of in isola-
tion, but the requests from a couple of
minutes ago that are getting batched
and are causing you to saturate CPU
are actually affecting the latency for
requests that are happening minutes
later. Understanding that kind of root
cause analysis is very, very challeng-
ing, because the amount of data are so
overwhelming that if you centralize all
of it, you’re not going to be able to af-
ford your observability system, and if
you don’t you literally lack the infor-
mation to run that analysis.

Now we’re going to drill down into
more detail about what goes on in
collection. I want to go through some
definitions that will enable us to
have this discussion. There are con-
cepts that are in the literature that I
want you to explain what these are,
the first one being a transaction.

I think a transaction ought to be con-
sidered a single logical unit of work,
in its entirety. I say “in its entirety”
to emphasize the fact that the same
transaction may move from process
to process, from machine to machine,
and from thread to thread.

Can give an example of a transaction,
either something you worked on at
Google or at another project?

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
•• 344—Pat Helland of Salesforce talks about systems at web scale, failure,

and state in conversation with Edaena Salinas.
•• 343—John Crain talks ethereum and blockchain applied to smart con-

tracts with Kishore Bhatia.
•• 342—István Lam of Tresorit with host Kim Carter talks about the EU

General Data Protection Regulation.

UPCOMING EPISODES
•• 347—Tyler McMullen of Fastly on content distribution networks with host

Jeremy Jung.
•• 348—Host Felienne discusses concurrency in .NET with Ricky Terrell.
•• 349—Gary Rennie, a core contributor to the Phoenix framework, appears

with host Nate Black to discuss this popular Elixir framework.

SOFTWARE ENGINEERING RADIO

Sure. Web search is an example that
we can all relate to. You type your
query. The transaction begins in your
browser. It goes through a number
of front-end layers. Google runs a
web server, which is where the logic
starts. That farms it out to dozens of
services that all take a crack at your
query. Google takes the results and
combines the results into a result set
that it presents it to you.

I want to move on to another impor-
tant concept in tracing, which is the
idea of context and propagation.

There is a sequence of events that af-
fect a single transaction. The context
object is usually the thing where you
store some kind of central identifier
that you can use to tie that sequence
together. We do things concurrently
so the context literally splits in half
and then rejoins later.

Let’s go back to this Google search
example. What are some interesting
fields that would be in the context?

The approach that we took with
Dapper was honestly pretty simplis-
tic but was effective, which was to
have two unique IDs. One was called
the trace ID, which lived for the en-
tirety of this one transaction, and the
other was called a span ID.

A span is one logical segment of
that trace that doesn’t have any in-
ternal forking and joining of its own
and is the right size to measure in a
system like this. You’re not going to
have a span for every system call, but
you probably will have a span for ev-
ery RPC or HTTP call.

The trace ID is consistent for
the entire trace. The span IDs are
unique within that trace. You form
a tree, more formally theoretically
a graph of spans pointing to their

parents. That allows you to infer
the structure of the transaction and
identify things like the critical path.
The context will contain the trace and
span ID.

I’m hoping to get something more
concrete like the name of each ser-
vice it visits, the IP address, maybe
this stack trace or call stack on that
process.

That’s not in the context. There are
two types of data that you want to
record. One is the data that you re-
cord in band. If you’re sending a
request from service A to service B,
you have to pass along some con-
text in band with application data.
The in-band data are very small.
All you want to do is record unique
IDs. In Dapper we recorded a trace
ID that was consistent for the en-
tire transaction and what we called
a span ID that represents that one
service call.

The other data are out of band. In
the out-of-band channel, you record
much more detailed information: tim-
ing, tags, names of services, names of
endpoints, even a micro log of events
that took place for each span. That’s
all sent out of band, buffered, and does
not need to happen in real time. You
get it out of the process as efficiently as
you can.

There is this thick buffered out-of-
band channel and a thin in-band con-
text, which just record unique IDs.

This sounds something like how log
aggregators work, where you do not
need to forward the log message to
the log aggregator during the work
the program is doing, as long as it
gets queued up and later gets sent.

Exactly the same.

I’m inferring these IDs enable you to
correlate all of the different collections
that occurred across many different
servers, so that you’re able to match up
all of these different pieces of context.

Exactly.

Do we trace exceptional conditions
or errors as well?

We should. It’s a goal for a systems like
this to have extra detail when things
aren’t going well. An error would be
an example of that. Both soft errors
and hard errors.

ABOUT THE AUTHOR

ROBERT BLUMEN is the lead DevOps engineer at SalesForce Desk.com.

Contact him at robert@robertblumen.com.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

	 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE � 101

