
130 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 19©2019 I EEE

Editor: Tim Menzies
North Carolina State University
tim@menzies.us

REDIRECTIONS

“KEEP IT SIMPLE” is a phrase I like
to say when I teach my introduction to
software engineering course. “Keep-
ing it simple is easier said than done” is
another phrase I also like to say in the
course. It’s funny how keeping it sim-
ple in software development can often
mean revising and refactoring an exist-
ing system until it is elegant enough to
afford adaptation and change. Simplic-
ity and elegance are the goals of many
developers when they’re designing soft-
ware. Developers often view complex-
ity as the opposite of simplicity, but I
argue that complexity is not the right
word. I think complicated software is
really what people are worried about.
In other fields, such as physics or even
education,3 complexity refers to how
agents, individuals, and entities inter-
act with one another via a small set
of rules or processes to produce intri-
cate and interesting behaviors, much
like birds or fish flocking and swarm-
ing together in complex patterns with-
out collisions. Analogously, developers
want their code to compose a solution
both clearly and elegantly, allowing for
dynamism and adaptability.

What developers are really wor-
ried about is that their software is

burdened by too many modules af-
fected by too many features with cross-
cutting concerns. They are concerned
that their software will be fragile and
hard to change. They are concerned
about software that lacks the elegance
or dynamism to enable customiza-
tion and afford future changes. This is
what complicated software is. The sys-
tems that we seek to build that exhibit
elegance and simplicity are complex
systems that, through a set of rules or
contracts, are intentionally or naturally
kept small enough that one can cus-
tomize and extend such a system with
ease. We fear complication because
it leads to brittle designs that are dif-
ficult to change. Complication means
we have to juggle too many competing
concerns when we maintain our partic-
ular module.

In this article, I’ll discuss simplic-
ity in agile software, the relationship
between architectural patterns and
complexity, the value of simplicity in
software engineering research, and
why we should refer to the formerly
perceived complexity in software as
complicated software.

Agile and Simplicity
Agile software development processes
and guidelines, consultants, and prac-
titioners argue that you should keep

it simple.1 This view was born out
of experience with developing soft-
ware systems with functionality and
features that were not asked for but
were perhaps expected or implied or
seemed like a natural necessity at the
time. These extra features often caused
maintainability problems later. The ag-
ile view of simplicity is much like the
systems view of complication and com-
plexity. A simple system that is agile is
not complicated; it implements the re-
quirements and the user stories and not
much more. To add extra features or
functionality is to waste time on what
was not asked for and could compli-
cate future changes as well. The more
responsibilities you gave a module, the
more you would have to maintain later.
So to make the software agile, “Keep
it simple” also meant “Don’t do what
isn’t asked for.” The agile solution to
not addressing potential future require-
ments was that refactoring, supported
by unit testing, was always an option—
and refactoring was easier with sim-
ple, uncomplicated modules rather
than those complicated by too many
responsibilities. The unit testing was
a feedback mechanism in the process of
agile software development, effectively
causing agile systems to exhibit com-
plex behavior through “simple” rules.
In open source software, Jingwei Wu

Complexity: Let’s Not
Make This Complicated
Abram Hindle

Digital Object Identifier 10.1109/MS.2018.2883875
Date of publication: 22 February 2019

REDIRECTIONS

 MARCH/APRIL 2019 | IEEE SOFTWARE 131

confirmed that self-organizing and
complex behaviors were being exhib-
ited in open source communities.5

Regarding Complexity,
It’s Complicated
Complex software in software engi-
neering typically refers to complicated
code. Most measures of complexity
are measures of information content in
the code, whether it is McCabe’s cyc-
lomatic complexity measuring branch-
ing or Halstead’s volume measuring the
information within a block of code—
Halstead’s volume is very similar to
the entropy of tokens multiplied by
the number of tokens in a code block.
Thus, when I refer to complexity, I am
discussing systems and modules with
Spartan rule sets, and complicated sys-
tems and modules are those with lots of
concerns and requirements. I argue that
we should consider changing the termi-
nology, as complexity is often used to
enable elegant systems that are exten-
sible, work well, and can scale. This is
achieved by establishing a small set of
rules or behaviors that a single module
is expected to fulfill, thus allowing a
composition of these submodules into
an interesting and often complicated-
looking software system.

What we really fear in software
development regarding complexity is
actually complication. Behavioral the-
orists, educators interested in self-or-
ganization, chaos theorists, and some
physicists define complex systems as
those systems with simple rules that
produce elegant and complex behav-
iors or complicated behaviors—this is
referred to as complexity. Software en-
gineers really seek to build systems that
are complex, and they seek to avoid
building systems that are complicated.
One example of complexity, as op-
posed to complicatedness, in software
engineering is the architectural pattern
of model view controller (MVC).

The role of model and view in MVC
are those of the modules that repre-
sent (model objects) versus the modules
that present (view objects). MVC al-
lows us to build systems that produce
very dynamic behaviors that respond
to changes in the environment quickly
and that do not require a lot of code to
keep views synchronized. If one doesn’t
use a model like MVC and design pat-
terns like the observer pattern, it is of-
ten hard to update all of the relevant
graphical user interface (GUI) com-
ponents that present the data stored
in a model. MVC provides a runtime
performance tradeoff for design-time
performance in terms of lack of com-
plication in design and perhaps bet-
ter maintainability. MVC can produce
very elegant systems composed of com-
ponents that follow a very small set of
rules and contracts, allowing systems
to have the dynamic behavior that we
expect of high-quality applications us-
ing modern GUI systems.

Simplistic Structures
of Software
Perhaps it is complexity, via simplic-
ity, that makes software work. Tim
Menzies has argued with me that an
interesting aspect of software is how
complicated we think it is versus how
often stable it is. The software is be-
ing evaluated many times per second,
and, for the most part, it is quite sta-
ble. Most of the programs you use do
not crash every second. Many of them
will eventually crash. Many of them
do crash. We complain about those
that crash, but, frankly, the norm is
that software doesn’t actually crash
on us frequently. Most of the software
we use actually does its job and actu-
ally works. So how is it that we are
suffering from complicated software
when these software systems are falling
apart as much as some would have us be-
lieve? In Ubuntu, Campbell et al.2 found

that most projects do not have more
than one crash report causes, al-
though some have many different crash
report causes and crash reports. Fur-
thermore, the causes of many software
crashes are quite predictable: many are
caused by a small set of application pro-
gramming interface functions, such as
strlen, free, and pthread_mutex_lock,
with many of these common crashing
functions producing the same signal
(SEGV or ABRT). Crashes commonly
occur in the same contexts with the
same functions.

Perhaps our expression of software
is more complex than it is complicated.
Other researchers have focused on so-
cial dynamics and have shown this to be
case,5 but existing source code is typi-
cally full of repetitive and uninteresting
patterns that are often repeated to pro-
duce software systems. Through our
study of software in which we treated
source code to natural-language process-
ing techniques as if source code were a
natural utterance,4 we found that the in-
formation content of software was quite
low compared with English-language
text. This means that the language we
use to define software is quite simple
compared with English text, but it also
means it is more repetitive. Natural-lan-
guage text is far more information dense
than software source code. Thus, less in-
formation is being transmitted per token
or word in source code than in English.
Now, they aren’t equivalent; the vocabu-
laries of software source code are often
quite large and project specific, whereas
the vocabulary of a language or writing
in a particular language, such as English,
is often still large but general and does
not change much across documents.
This difference in vocabulary might ex-
plain why, although software is low in
information, the broad vocabulary en-
ables the representation of problems via
identifier naming. Programs are coded in
common patterns.

REDIRECTIONS

132 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Simplicity in Research
As a software engineering researcher, I
have to deal with complicated research
all the time. My experience is that ar-

ticles that push for complicated meth-
ods typically are harder to replicate.
There seems to be more chance of error
in communication, replication, or re-
implementation and in the costs of the
new specific complications, whether
they be algorithms, features, data sourc-
 es, or other dependencies. The benefit of
building a complicated system for a re-
searcher is that he or she has done a lot
of work to get a system that performs
well. However, this comes at a cost be-
yond just the difficulty of replication.
For instance, if the data required are too
expensive to gather or are not available,
this often hinders applying the tech-
niques. The pileup of additional steps
causes a problem because it is difficult
to replicate the proposed work, which
cannot be used as a baseline unless

the source code is actually shared and oth-
ers can actually replicate the work. That
level of sharing is, in fact, quite a high
bar, whereas if a system is kept simple

or clearly defined, then it enables more
reimplantation and more replication.

Research that is left uncomplicat ed
enables better analysis of why a tech-
nique or where a technique would
work. Research that is uncomplicat-
 ed and simple has a higher chance of
providing some level of explainabil-
ity of results through posing relatively
simple theories. Furthermore, keeping
a proposed technique uncomplicated
means that errors in methodology and
measurement, and other threats to va-
lidity, can be further minimized. The
promotion of simple research faces a
barrier that performance of a simple
technique might be explainable, but its
performance might lag behind more
complicated specialized results—this
could be a hard sell for some program

committees. Researchers themselves
likely benefit the most from simplicity
in research, as they allow their work
to be impactful through its replication
rather than as a baseline or a contender.

K eeping it simple is easier said
than done, but software faces
a lot of factors that promote

this keeping-it-simple ethos: complica-
tion is rarely requested, simplicity pro-
motes complex systems that exhibit
adaptability and sometimes elegance,
and software and its failure are often
repetitive and predictable. All of these
factors provide evidence that software
is quite complex,5 and perhaps it is
simplicity at the heart of software that
enables these complex systems that are
not overly burdened by complication.
Researchers should consider the value
to stakeholders, such as developers, if
methods are kept simple and funda-
mentally replicable.

References
1. K. Beck and C. Andres, Extreme

Programming Explained: Embrace

Change, 2nd ed. Reading, MA:

Addison-Wesley, 2004.

2. J. C. Campbell, E. A. Santos, and A.

Hindle, “Anatomy of a crash reposi-

tory,” PeerJ Preprints, vol. 4, 2016.

doi: 10.7287/peerj.preprints.2601v1.

3. W. E. Doll, A Post-modern Perspec-

tive on Curriculum. New York:

Teachers College Press, 1993.

4. A. Hindle, E. T. Barr, Z. Su, P. T.

Devanbu, and M. Gabel, “On the

naturalness of software,” in Proc.

Int. Conf. Software Engineering, Zu-

rich, Switzerland, 2012, pp. 837–847.

5. J. Wu, R. C. Holt, and A. E. Has-

san, “Empirical evidence for SOC

dynamics in software evolution,” in

Proc. 2007 IEEE Int. Conf. Software

Maintenance, Paris, France, 2007,

pp. 244–254.

ABOUT THE AUTHOR

ABRAM HINDLE is an associate professor of computing science at the Uni-

versity of Alberta, Canada. Hindle received a Ph.D. in computer science from

the University of Waterloo, Canada. His research interests include problems

relating to mining software repositories, improving software engineering-ori-

ented information retrieval with contextual information, the impact of software

maintenance on software energy consumption, and how software engineering

informs computer music. Contact him at abram.hindle@ualberta.ca.

My experience is that articles that
push for complicated methods
typically are harder to replicate.

