
FOCUS: GUEST EDITORS’ INTRODUCTIONFOCUS: GUEST EDITORS’ INTRODUCTION

Agile Development at
Scale: The Next Frontier
Torgeir Dingsøyr, SINTEF Digital and Norwegian University of Science and Technology

Davide Falessi, California Polytechnic State University

Ken Power

Digital Object Identifier 10.1109/MS.2018.2884884
Date of publication: 22 February 2019

30 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 19©2019 I EEE

 MARCH/APRIL 2019 | IEEE SOFTWARE 31

AGILE METHODS HAVE trans-
formed the way software is developed,
emphasizing active end-user involve-
ment, tolerance to change, and evo-
lutionary delivery of products. The
first special issue on agile develop-
ment described the methods as focus-
ing on feedback and change.1 These
methods have led to major changes
in how software is developed. Scrum
is now the most common framework
for development in most countries,
and other methods such as extreme
programming (XP), elements of lean
software development, and Kanban
are widely used. What started as a
bottom-up movement among software
practitioners and consultants has been
taken up by major international con-
sulting companies who prescribe
agile development, particularly for con-
texts where learning and innovation
are key. Agile development methods
have attracted interest primarily in
software engineering1, 2 but also in
a number of other disciplines includ-
ing information systems3 and project
management.4

Agile software development meth-
ods were originally targeted at small,
colocated development teams but are
increasingly applied in other con-
texts. They were initially used to de-
velop web systems and internal IT
systems but are now used in a range
of domains, including mission-criti-
cal systems. Methods that were de-
signed for single teams of five to nine
developers have been adapted for use
in projects with tens of teams and
hundreds of developers, which in-
volve integration with hundreds of
existing systems and affect hundreds
of thousands of users.

Why use agile methods for large
projects? Early advice from the ag-
ile community was that scaling XP
and agile projects is probably the
last thing anyone would want to

do.5 Advice from several fields is to
reduce the size of software projects;
some envision the “death of big
software” because new technology
allows for microservices, which
dramatically reduce the need for co-
ordination.6 Project management re-
searchers recommend reducing the
size of projects7 to decrease risk, and
the general advice from software
engineers is to “simplify your prod-
uct portfolio, reduce the product
complexity.”8

Although these suggestions favor
reducing the size of software proj-
ects as much as possible, solutions
often require too much work for a
single team. This is often because
new solutions must be developed
quickly, or that new solutions are so
complex or so dependent on existing
systems that it is deemed inefficient
or impractical to split development
into small projects. Large telecom
products, e.g., typically have more
than 20 teams working on the de-
velopment. Agile methods provide a
way to reduce risk at scale while also
enabling innovation.

So, what exactly is “large-scale
agile development?” A participant
in a large project who was being in-
terviewed expressed it as “It is like
establishing a medium-size com-
pany overnight.” The context of that

interview was a new project involv-
ing a number of external consultants.
Many times, large-scale develop-
ment will be in a product develop-
ment setting with established teams
and established domain knowledge.
There will be different needs for
the different types of large-scale
projects. In “Perform: An Example
of a Large-Scale Project,” we describe
an example of the first type. A com-
mon description of large-scale agile
development is that of development
efforts with more than two develop-
ment teams, and such projects often
have a high number of actors and
interfaces with existing systems,9
which have implications for the de-
velopment process.

Why is large-scale agile develop-
ment important now? First, the global
focus on digitalization has led to an
increased understanding of the im-
portance of software, how it perme-
ates every sector of society, and how
it enables competitiveness and inno-
vation. Second, early studies of agile
development on a large scale indicate
challenges with crucial aspects, such
as coordinating teams and work.10 As
new frameworks increase in popular-
ity, more studies are needed. Today,
few independent empirical studies ex-
ist on how the frameworks work in
practice, which circumstances each

The global focus on digitalization has
led to an increased understanding
of the importance of software, how

it permeates every sector of society,
and how it enables competitiveness

and innovation.

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

framework suits best, and what the
challenges are and how to overcome
them.11 Finally, company manage-
ment has become more aware of the
importance of software, which leads
to a renewed focus on developmental
methodologies that ensure competi-
tiveness. The stakes are higher now
because these methods are used on
larger scales. (See a further detailed
discussion about scaling frameworks
in “Practitioner Opinion: Agility at
Scale: When a Small Cross-Func-
tional Team Is Not Enough.”)

For whom is this special issue
relevant? It is relevant for decision
makers at all levels, whether they
are choosing a framework to adopt
at the company or project level, tai-
loring a development model, or se-
lecting key practices for tailoring.
The insight provided in this special
issue is relevant for managers at
software companies, program man-
agers, project managers, facilitators,
and developers as well as people
in technical roles, product own-
ers, and customer representatives.

This special issue in IEEE Software
draws upon past studies and expe-
riences, which will complement and
sometimes contradict advice from
consultants who have developed
their own frameworks or mod-
els. The methods presented serve a
number of functions, from support-
ing process improvement initiatives
with the goal of improving how
products and services are delivered
(the focus of this issue), to making
a company attractive for partners or
employees.

PERFORM: AN EXAMPLE OF A LARGE-SCALE
PROJECT
The Norwegian Public Service Pension Fund needed a new
office automation system because of a public reform. The
content of the reform still needed to be passed by parliament
after the development had to begin, so the project adopted
an agile development method.

Perform S1 was one of the largest IT projects undertaken
in Norway, with a final budget of approximately €140 million.
The four-year project comprised 175 people, 100 of whom
were external consultants from five companies. Approxi-
mately 800,000 person-hours were used to develop roughly
300 epics with approximately 2,500 user stories. These ep-
ics were divided into 12 releases.

An existing office automation system was client-/server-
based and written in C. The new system was a service-orient-
ed system written in Java. The database from the old system
was retained, but the data model was changed. The regula-
tions and legislations were implemented in the new system as
rules using JRules. The system was integrated with a new doc-
ument archive and systems from another public department.

An example release contained the coupling of workflow
in the office automation system to an archive solution, a
self-service solution for new legislation, simulation of servic-
es toward external public departments, and first-data ware-
house reports on new data warehouse architecture. Most
user stories were identified prior to the first release but were
supplemented and reprioritized for every release.

Although it started small, the development project at its
peak involved 12 scrum teams working in parallel. There
were numerous dependencies among the teams, and to
ensure coordination, the teams took on the added roles
of technical architect, functional architect, and testing re-
sponsibility. They added several extra arenas in addition to
Scrum of Scrum meetings. The product was demonstrated
every three weeks following the end of an iteration. The
product owners were supported by extra resources, with
a total of 30 people from the line organization working to
define user stories.

The key characteristics were

• 2,300 user stories
• €140 million total cost
• 12 development teams
• 800,000 person-hours
• 12 releases
• 30 people from the line organization involved.

 S1. T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring

software development at the very large-scale: A revelatory

case study and research agenda for agile method adaptation,”

Empirical Softw. Eng., vol. 23, no. 1, pp. 490–520, 2018.

[Online]. Available: https:// doi.org/10.1007/s10664-017-

9524-2

 MARCH/APRIL 2019 | IEEE SOFTWARE 33

PRACTITIONER OPINION: AGILITY
AT SCALE: WHEN A SMALL CROSS-
FUNCTIONAL TEAM IS NOT ENOUGH

STEVE ADOLPH, SENIOR CONSULTANT
CPRIME
It is a project manager’s worst-case scenario: congestive
collapse. Everyone is running around “hair-on-fire busy,” and
nothing is getting done. A looming drop-dead date, which is
not just an arbitrary milestone but reflects a real must-ship
date, must be met otherwise more than a year’s worth of de-
velopment effort will be lost. Many of the teams are so-called
agile teams, but the agile magic is not happening. This is the
situation I found myself in at a major industrial equipment
manufacturer, with more than 150 engineers trying to fight
what they believed was a lost battle. With the clock ticking,
we stood the project down for two weeks, trained the teams
in a scaling methodology, replanned to create a coordinated
backlog, implemented a release plan, and relaunched. The
creation of a coordinated program backlog and bringing all
of the teams together in a classic big-room planning ses-
sion aligned the teams and enabled them to focus on getting
something done. As a result, a viable product was shipped on
time. For this client, the term agile was no longer just a team
methodology but rather a business strategy.

Nearly 20 years ago, Agile Manifesto captured the imagi-
nation of many software developer’s burdens with what
Alistair Cockburn called the big-M methodologies as well as
the excesses of the late-1990s software quality rage. Teams
began experimenting with agile methodologies and liked the
results. Self-reporting surveys repeatedly demonstrated that
agile teams created greater customer satisfaction faster,
with higher quality and lower costs. Agile demonstrability
worked and organizations wanted more of it.

As organizations demanded more, the challenge then
became how to create agility beyond the team. Although
some teams could create end-to-end value on their own,
the team was often just one part of an organization’s value-
creation process. Also, that team often had to coordinate
their work with other teams to create value. Just how did
that supposedly omniscient product owner come up with
those user stories and what happened to the “increment”
after that product owner accepted it? How were the team’s

fast learning cycles influencing the enterprise’s entire value-
creation process? How do we coordinate value delivery by
multiple teams, and more importantly, how do we coordinate
their learning? How do we manage customer needs when
a user story only captured a tiny sliver of value; slivers of
values so thin, customers often regarded them as merely
“nerd” details? Ignoring these questions or simply punting
the answers to some higher-level product owner meant that
the agile methodologies only provided guidance for small
teams or for enterprises where teams could be organized as
multiple, independent feature teams.

Some practitioners remembered agile as more than just
a basket of methodologies, that it is a strategy, a mind-set.
That it is a competitive strategy for creating value by learning
faster than the rate of change. That the economics of agility
are a function of time and not size. Some agilists began ex-
ploring how that mind-set could be applied to larger and more
complex systems; realizing agile had not displaced 50 years
of software engineering experience. In fact, they looked at
how to exploit that knowledge to accelerate the learning pro-
cess. They began exploring new patterns of planning, such
as multilevel adaptive planning, and to integrate the concepts
of both intentional and emergent architectures into new pat-
terns of agile architecture. They looked at how to utilize fre-
quent feedback from demos to guide the analysis process, to
learn what was truly valuable and to quickly prune less valu-
able requirements. They sought to balance individuals and
interactions ahead of processes and tools at scale.

The so-called scaling frameworks, e.g., scaled agile
framework, disciplined agile delivery, Nexus, large-scale
scrum, and so on emerged from these patterns. These scal-
ing frameworks integrated patterns for roles, practices, met-
rics, and supporting artifacts. They addressed the real con-
cerns of practitioners and managers of large and complex
systems. Requirements analysis, architecture, design, and
long-range planning were all essential. Specialization was
sometimes necessary; however, it could be performed in a
framework that supported fast learning cycles and adapta-
tion across a number of different time horizons.

(Continued)

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Agile Development
and Scale: The First
Iterations
In the context of software development,
“agile” was first used in a 1998 IEEE
Software article12 to describe in-house
methods called agile software process
and agile software engineering environ-
ment developed at Fujitsu. Methods
such as XP, scrum, Crystal, Evo, and
feature-driven development followed
the dynamic software development
method as iterative development meth-
ods.13 Some credit Microsoft with be-
ing the originators of many of the work
practices such as continuous build,11
while some argue that the practices
have been common among developers
since the 1960s and that agile methods
are “old wine in new bottles.”12 Early
advice on method tailoring suggested
using more disciplined methods when
many people were involved.14

The first wave of agile methods
focused on development in a team
setting, with an emphasis on itera-
tive development of high-priority
features, prescribing fewer roles, and
easy-to-use artifacts that aided the
development. Many companies be-
gan with long iterations and moved
to shorter iterations or continuous
development, with many reducing
their “ceremony” by using methods
such as Kanban. When more devel-
opment teams were needed, they
were coordinated in a separate forum
where delegates from participating
teams would identify and manage de-
pendencies in tasks among the teams.

Larger development projects would
often follow agile methods at the
team level, combined with a proj-
ect management framework such
as the Project Management Body of
Knowledge or Projects in Controlled

Enironments, version 2 (more com-
monly known as PRINCE2). An
example of such a project was the
28-month, US$15-million cruise-
company project that developed a
new web-based customer booking
engine.15 Because of numerous re-
quirement changes, they decided
to use agile methods for this proj-
ect, which was considered success-
ful by its sponsors despite cost and
schedule overruns. During the proj-
ect, roughly 60% of requirements
changed, e.g., a requirement that al-
lowed cruise passengers to choose a
specific cabin instead of a class of
cabins, led to a dramatic change in
hospitality practices because previ-
ous systems let users book a class
and then assign cabins at check-
in time. A study conducted of the
project describes the combination
of structured planning using the

PRACTITIONER OPINION: AGILITY
AT SCALE: WHEN A SMALL CROSS-
FUNCTIONAL TEAM IS NOT ENOUGH (Cont.)

These frameworks accelerated agile adoption among
what many had derisively called laggard organizations,
which were slow to adopt agile because they simply did
not believe agilists really understood their needs. Users
liked how the scaling frameworks enabled them to see
beyond the product owner and offered models for aligning
the business with IT. They liked how the scaling frame-
works did not just rely on the skills of omniscient product
owners or even an omniscient “chief” product owner.
They appreciated how the frameworks help create much
needed alignment by integrating the fast feedback cycles
throughout the whole value-creation process and not just
within the software teams. Business and IT began to fi-
nally realize they were part of the same organization and

had the same goals. Scaling frameworks helped organiza-
tions see agility as more than an IT or engineering cost-
reduction exercise.

Although fairly intricate, scaling frameworks introduced
many new roles, artifacts, and practices. There are even
scary reminders of the big-M methodologies. But then
product development is complex, and a lack of willingness
to understand the context of an organization simply means
we will not have credibility with that organization. Simplic-
ity in engineering is good, and Jim Highsmith once de-
scribed agile methodologies as a barely sufficient process.
But as Einstein once said, “Make everything as simple as
possible, but no simpler.” After all, the Agile Manifesto is
all about balance.

 MARCH/APRIL 2019 | IEEE SOFTWARE 35

FRAMEWORKS FOR LARGE-SCALE
AGILE DEVELOPMENT

Agile portfolio management S2 is suitable for organizations.
Its main characteristics are the following:

• It introduces rolling planning, forecasts, and the
dynamic management of portfolios combined with
normal agile practices such as standups
and retrospectives.

• It establishes a set of core values, including a focus
on value, a continuous review of the portfolio, and a
demonstration of value from the portfolio.

• It encourages collaboration and empowerment.

Disciplined agile delivery S3 is suitable for one to many
teams. Its main characteristics are the following:

• It is a comprehensive framework that combines ideas
from agile development, lean software development,
and agile modeling.

• It introduces roles such as stakeholders and archi-
tectural owner, specialists, domain experts, technical
experts, independent testers, and integrators.

• Twenty new roles appear with scale, such as chief
architecture owner, chief product owner, communities
of practice lead, and portfolio manager.

The Kanban method S4 is suitable for organizations of
any size, from small to very large. Its main characteristics
are the following:

• It combines elements of the work of W. Edwards
Deming, Eli Goldratt, Peter Drucker, and Taiichi Ohno as
well as concepts such as pull systems, queuing theory,
and flow.

• It is a significant differentiator from other methods
because it starts with where an organization is, and
does not require the creation of new roles, ceremonies,
or structures before getting started.

Large-scale scrum (LeSS) S5 is suitable for two to seven
(“LeSS”) or eight-plus (“LeSS-huge”) development teams.
Its main characteristics are the following:

• A “minimal extension” is required to scrum to handle
large-scale product development.

• Product owners are supported by product managers
and area product owners in “huge” communities of
practice for knowledge sharing and improvement
across teams.

• Ideally, most work is done in the feature teams; how-
ever, sometimes a separate “undone department” is
used to handle architecture, business analysis, quality
assurance, or testing.

Nexus S6 is suitable for three to nine development teams.
Its main characteristics are the following:

• Roles, events, artifacts, and rules coordinate the work
of approximately three to nine scrum teams working
on a single product backlog to build an integrated
increment that meets a goal.

• Extra meetings and roles are added on to scrum to
coordinate teams.

• It provides a common demonstration for all teams with
the same iteration length.

The scaled agile framework (SAFe) S7 is suitable for from
groups of 50–150 people to whole organizations. Its main
characteristics are the following:

• It is a comprehensive framework that
incorporates ideas from agile development and lean
production.

• As of version 4.6, there are now multiple versions of
SAFe that target organizations and development efforts
of different sizes. The versions are branded as essential
SAFe, large-solution SAFe, portfolio SAFe, and full
SAFe.

• A central concept is the “agile release train,” with five to
12 development teams that develop product increments
every eight to 12 weeks.

Scrum at scale S8 is suitable for whole organizations. Its
main characteristics are the following:

(Continued)

36 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

project management framework
and the iterative nature of agile
methods as enabling the project to
learn and adapt.15

In a recent historical overview
of agile software development, the
topic “large-scale agile” appears to
originate in the mid-2000s.16 Eck-
stein’s book Agile Software Devel-
opment in the Large, published in
2004, was the first on the topic. The
growing interest in applying agile
methods to large projects is illus-
trated by the ranking of burning re-
search questions by practitioners at
the XP Conference, who put “agile
in the large” at the top.17

A second wave of agile methods
sought to address challenges of scale,
replacing advice from project man-
agement frameworks on addressing
layered organizations with portfo-
lios, addressing risks, increasing the
number of roles and practices for
coordination and alignment across
teams, and, in general, picking up on
improvement trends, e.g., lean, and
adapting them to large-scale software
development. Some of the new frame-
works provide extensive recommen-
dations for a number of areas such
as the scaled agile framework, while
others provide less ceremony and
recommend more decision authority

for autonomous teams, such as in the
Spotify model. Thus far, there are
few independent studies that show
how these new frameworks func-
tion, and the trend of making devel-
opment methods a top-down rather
than a bottom-up decision is likely to
lead to challenges for adopting new
practices. On the other hand, creat-
ing awareness among managers of
the importance of the development
process as well as that continued im-
provement, is very costly.

In This Issue
This special issue includes contribu-
tions on how to address the main

FRAMEWORKS FOR LARGE-SCALE
AGILE DEVELOPMENT (Cont.)

• It focuses on “networks” of scrum teams.
• It separates responsibility for coordinating the “how”

and “what” of work in organizations.
• It features a scrum master cycle with advice on how

to coordinate scrum teams, and a product owner cycle
with advice on coordination of what is to be made (i.e.,
backlog prioritization).

The Spotify model S9,S10 is suitable for product
development with many teams. Its main characteristics
are the following:

• It provides a snapshot of a rapidly evolving
model.

• It introduced the language of squads (i.e., the basic unit
of development), tribes (i.e., the collection of squads
working in related areas), chapters (i.e., the people with
similar skills), and guilds (i.e., the organic community of
interest).

• It features different types of communities of interest
or practice established across teams to ensure
learning and alignment. It separates architectural
roles, such as system owners and a chief
architect.

 S2. Agile Business Consortium, “AgilePfM,” Accessed on: Dec. 18,

2018. [Online]. Available: https://www.agilebusiness.org/agilepfm

 S3. The Disciplined Agile (DA) Framework. Accessed on: Dec. 18,

2018. [Online]. Available: www.disciplinedagiledelivery.com

 S4. LeanKanban, “What is the Kanban method?” Accessed on: Dec.

18, 2018. [Online]. Available: https://leankanban.com/project/

what-is-km/

 S5. LeSS. Accessed on: Dec. 18, 2018. [Online]. Available: https://

less.works/

 S6. Scrum, “The Nexus guide,” Accessed on: Dec. 18, 2018. [Online].

Available: https://www.scrum.org/resources/nexus-guide

 S7. SAFe, “Welcome to scaled agile framework 4.6,” Accessed on:

Dec. 18, 2018. [Online]. Available: https://www.scaledagileframe-

work.com/about/

 S8. Scrum @ Scale, “Scrum at scale guide,” Accessed on: Dec.

18, 2018. [Online]. Available: https://www.scrumatscale.com/

scrum-at-scale-guide/

 S9. H. Kniberg and A. Ivarsson, “ Scaling agile @ Spotify with tribes,

squads, chapters & guilds,” Spotify, Sweden. Accessed on: Dec.

18, 2018. [Online]. Available: https://blog.crisp.se/wp-content/

uploads/2012/11/SpotifyScaling.pdf

 S10. Spotify Labs, “Spotify engineering culture (part 1),” Sweden.

Accessed on: Dec. 18, 2018. [Online]. Available: https://labs.

spotify.com/2014/03/27/spotify-engineering-culture-part-1/

 MARCH/APRIL 2019 | IEEE SOFTWARE 37

challenges that emerge when using
agile methods in large software de-
velopment projects and programs:

A central question is whether one
should apply agile methods to large-
scale development. In “Relationships
Bet ween Project Size, Agile Prac-
tices, and Successful Software De-
velopment: Results and Analysis,”
Jørgensen describes a study of 196
Norwegian IT projects and finds that
projects using agile methods outper-
form nonagile projects when the proj-
ects are large. A second question is
how to adapt agile methods for large-
scale development. We now have a
number of new frameworks available;
see, e.g., “Frameworks for Large-Scale
Agile Development.” In “Implement-
ing Large-Scale Agile Frameworks:
Challenges and Recommendations,”
Conboy and Carroll provide recom-
mendations based on a study of 13
agile transformation cases from com-
panies that adopted frameworks such
as the scaled agile framework, the
Spotify model, and Nexus.

Large-scale agile development will
involve numerous people in many
development teams. Previous stud-
ies have addressed the challenges as-
sociated with the lack of alignment
among teams.18 Agile methods pri-
marily rely on oral communication for
knowledge sharing through practices
such as retrospectives and pair pro-
gramming. In “Spotify Guilds: How
to Succeed With Knowledge Sharing
in Large-Scale Agile Organizations,”
Šmite and her coauthors provide re-
search-based advice on success criteria
for what is more commonly known as
communities of practice.

Another challenge in large-scale
development is to ensure customer
collaboration because there are often
numerous stakeholders. In “Tailoring
Product Ownership in Large-Scale
Agile Projects: Managing Scale,

Distance, and Governance,” Bass
and Haxby describe the product-
owner behaviors that are valued by
experienced product owners and
line managers, based on their stud-
ies of 21 organizations.

A final challenge with scale is de-
cision-making efficiency with large
projects or product development ef-
forts. In “Empower Your Agile Orga-
nization: Community-Based Decision
Making in Large-Scale Agile Devel-
opment at Ericsson,” Paasivaara and
Lassenius describe a mode of deci-
sion making that seeks to preserve
team autonomy in a globally dis-
tributed organization with up to 40
teams working on a product.

T oday, large-scale agile de-
velopment is receiving wide-
spread interest. What will

happen with respect to the devel-
opment of methodology advice for
large-scale agile development remains
to be seen. However, although there
is a number of frameworks presented
in this article, we believe advice on
large-scale agile development is still
in a nascent state. An overreliance on
frameworks can be a dangerous thing;
we have observed evidence of people
embracing frameworks for large-scale
agile without considering the problem
they are trying to solve or whether the
framework will really help. Like with
agile itself, frameworks should never
be the goal; frameworks should help
achieve a goal.

Introducing a scaling framework
is a significant change for many orga-
nizations and should be approached
with care. In particular, organizations
should consider why something works
on a smaller scale before attempting
it on a larger scale. There is also the
danger of people treating these frame-
works as context-free recipes and

blindly following the framework with-
out due consideration of their con-
texts. In the coming years, we need
practitioners to share their experiences
and express needs for research ar-
eas, consultants to pick up research
findings, and to continue integrating
their experiences from a number of
clients. Finally, we need researchers
to provide contextually relevant ad-
vice by conducting empirical studies
and combining lessons with previous
research from relevant fields such as
project management, organizational
psychology, and management science.
It is also critical for researchers and
practitioners to understand the basic
theory behind these practices so that
they can better scale them. After all, it
is a learning process; scale raises a set
of new challenges, but it is still about
feedback and change.

Acknowledgments
The work in this special issue was
partially supported by the Research
Council of Norway under grant
236759. We also thank Knut Rol-
land at SINTEF and the University
of Oslo for comments on an earlier
version of this guest editorial. We are
very grateful to the authors who have
submitted articles and to the review-
ers who have contributed greatly to
our work.

References
 1. L. Williams and A. Cockburn, “Agile

software development: It’s about feed-

back and change,” IEEE Computer,

vol. 36, no. 6, pp. 39–43, 2003.

 2. T. Dingsøyr, S. Nerur, V. Balijepally, and

N. B. Moe, “A decade of agile methodol-

ogies: Towards explaining agile software

development,” J. Syst. Softw., vol. 85,

no. 6, pp. 1213–1221, 2012.

 3. P. Abrahamsson, K. Conboy, and

X. Wang, “Lots done, more to do:

The current state of agile systems

38 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

development research,” European

J. Inform. Syst., vol. 18, no. 4, pp.

281–284, 2009.

 4. F. Niederman, T. Lechler, and Y. Petit,

“A research agenda for extending agile

practices in software development

and additional task domains,” Project

Manag. J., vol. 49, pp. 3–17, Oct. 2018.

 5. D. J. Reifer, F. Maurer, and H. Erdog-

mus, “Scaling agile methods,” IEEE

Softw., vol. 20, no. 4, pp. 12–14, 2003.

 6. S. J. Andriole, “The death of big soft-

ware,” Commun. ACM, vol. 60, no.

12, pp. 29–32, 2017.

 7. B. Flyvbjerg, N. Bruzelius, and

W. Rothengatter, Megaprojects and

Risk: An Anatomy of Ambition.

Cambridge, U.K.: Cambridge Univ.

Press, 2003.

 8. C. Ebert, “50 years of software engi-

neering,” IEEE Softw., vol. 35, no. 5,

pp. 94–101, 2018.

 9. K. H. Rolland, B. Fitzgerald, T.

Dingsøyr, and K.-J. Stol, “Problema-

tizing agile in the large: alternative

assumptions for large-scale agile

development,” in Proc. Int. Conf. In-

formation Systems, 2016, pp. 1–21.

 10. M. Paasivaara, C. Lassenius, and V.

T. Heikkila, “Inter-team coordina-

tion in large-scale globally distrib-

uted scrum: Do scrum-of-scrums

really work?” in Proc. ACM-IEEE

International Symposium on Em-

pirical Software Engineering and

Measurement, P. Runeson, M. Höst,

E.Mendes, A. A. Andrews, and R.

Harrison, Eds. Piscataway, N.J.:

IEEE Press, 2012, pp. 235–238.

 11. C. Ebert and M. Paasivaara, “Scaling

agile,” IEEE Softw., vol. 34, no. 6,

pp. 98–103, 2017.

 12. T. Dybå and T. Dingsøyr, “Empirical

studies of agile software development:

A systematic review,” Inf. Softw. Tech-

nol., vol. 50, pp. 833–859, Aug. 2008.

 13. C. Larman and V. R. Basili, “Itera-

tive and incremental development: A

brief history,” IEEE Computer, vol.

36, no. 6, pp. 47–56, 2003.

 14. B. Boehm and R. Turner, Balanc-

ing Agility and Discipline: A Guide

for the Perplexed. Reading, MA:

Addison-Wesley, 2003.

 15. D. Batra, W. Xia, D. VanderMeer,

and K. Dutta, “Balancing agile and

structured development approaches

to successfully manage large distrib-

uted software projects: A case study

from the cruise line industry,” Com-

munications Assoc. Info. Syst., vol.

27, no. 1, 379–394, 2010.

 16. R. Hoda, N. Salleh, and J. Grundy,

“The rise and evolution of agile soft-

ware development,” IEEE Softw.,

vol. 35, no. 5, pp. 58–63, 2018.

 17. S. Freudenberg and H. Sharp, “The

top 10 burning research questions

from practitioners,” IEEE Softw.,

vol. 27, no. 5, pp. 8–9, 2010.

 18. S. Bick, K. Spohrer, R. Hoda, A.

Scheerer, and A. Heinzl, “Coor-

dination challenges in large-scale

software development: A case study

of planning misalignment in hybrid

settings,” IEEE Trans. Softw. Eng.,

vol. 44, no. 10, pp. 932–950, 2017.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

TORGEIR DINGSØYR is a chief scientist at SINTEF Digital in

Trondheim, Norway, and an adjunct professor at the Norwe-

gian University of Science and Technology. His main research

interests include software process improvement, teamwork in

software development, knowledge management, and large-

scale agile development. Contact him at torgeird@sintef.no.

DAVIDE FALESSI is an associate professor of computer

science at California Polytechnic State University, San Luis

Obispo. His main research interests include devising and

empirically assessing scalable solutions for the develop-

ment of software-intensive systems. Falessi received a Ph.D.

in computer engineering from the University of Rome Tor

Vergata. He is IEEE Software’s associate editor for software

economics and a Senior Member of the IEEE. Contact him at

d.falessi@gmail.com.

KEN POWER has held multiple positions in large technol-

ogy organizations. His current responsibilities include leading

global, large-scale engineering organization transformations.

He has been working with agile and lean methods since 1999.

He holds patents in virtualization and network manage-

ment. His main interests include complex adaptive systems,

sensemaking, flow-based development, software architecture,

distributed systems, artificial intelligence, strategy, engineer-

ing management, and leadership. Contact him at ken.power@

gmail.com.

