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What the Errors 
Tell Us
Margaret H. Hamilton, Hamilton Technologies

// With a preventative paradigm, most errors 

aren’t allowed into a system in the first place, 

just by the way the system is defined. With 

such an approach, the more reliable the system, 

the higher the productivity in its lifecycle. //

IT WAS NOT quite the ’60s. No 
school existed for learning how to 
build software. You were on your 
own. Courses, if any, were concerned 
only with becoming familiar with a 
set of available commands to tell the 
computer what to do (sometimes pro-
vided by a computer’s manufacturer). 
It was difficult to understand why 
this and only this seemed to matter. 
Just knowing a set of English words 
would not demonstrate one’s abil-
ity to write a good novel. Experi-
ence with the programming language 
needed on a particular project was in 
great demand.

Little did we know that what 
we were doing then would become 
known years later as “software  
engineering,” when we were in  
the trenches building flight soft-
ware for the Apollo missions,1 and 

that software engineering would 
be celebrated in this issue of IEEE 
Software and at the 2018 Interna-
tional Conference on Software En-
gineering as having existed for at 
least half a century.2

Early Days
My first assignment was creating 
weather prediction software in hexa-
decimal on the LGP-30, for MIT’s 
Edward Lorenz. Understanding the 
hardware’s relationship to the soft-
ware and how to use this knowledge 
to increase the software’s perfor-
mance was a priority.

Errors were dreaded, because 
debugging took forever. Setting up 
longer runs overnight, and spending 
more time up front (on the hexadeci-
mal code) and less time on testing 
at the back end, helped. Still, more 

needed to be done. The “solution”: 
instead of always having a new  
paper tape of machine code (in bi-
nary) generated by the computer 
from the hexadecimal program, the 
breakthrough was realizing changes 
could be made directly to the tape 
by poking a hole in it with a pencil 
to turn a 0 into a 1, or covering up 
a hole with Scotch Tape to turn a 1 
into a 0. But this approach (“hack-
ing”) could be error-prone.

Another project was the SAGE 
(Semi-Automatic Ground Environ-
ment) air defense system at Lincoln 
Laboratories, where we developed 
software on the first AN/FSQ-7 
computer, the XD-1, to search for 
unfriendly aircraft. It was espe-
cially important not to make an 
error because if you did, the com-
puter would tell everyone. The ma-
chine was huge. When it crashed, we 
heard loud siren-like and foghorn-
like sounds throughout a very large 
building. Operators and program-
mers would come running to find 
out whose program crashed. Since it 
belonged to the programmer stand-
ing in front of the console, it was no 
secret who the guilty one was. The 
location where the program halted 
could be found in a foot-long regis-
ter on the console with its flashing 
lights—the only information we had 
to find out what caused the crash. 
The next step: write the register’s 
contents on a piece of paper.

Given what it took to find the  
error, it was again reason to spend 
more time up front on the code. 
Keeping track of which program 
caused which crash was a challenge. 
My solution: take a Polaroid picture 
of each programmer posing next to 
his or her bug. The pictures became 
more creative as time went on. We 
all loved to listen to the sounds of 
one program. One time a computer 
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operator called at four in the morn-
ing and said, “Something terrible 
happened; your program no lon-
ger sounds like a seashore.” I got in 
the car and rushed to work. We had 
found a new way to debug, using 
sound. I began to find more ways to 
understand what made a particular 
error or a class of errors happen as 
well as how to prevent it from hap-
pening in the future.

Apollo Onboard Flight 
Software
SAGE had its drama, especially when 
it came to errors. But this was only 
the beginning of what would come 
next: the Apollo onboard flight soft-
ware project at MIT, under contract 
to NASA. The challenge was unique: 
build human-rated software, mean-
ing astronauts’ lives were at stake. 
Not only did it have to work, it had 
to work the first time. Not only did 
the software itself have to be ultra-
reliable, it also needed to be able to 
detect an error and recover from it in 
real time. It did not disappoint.

Each mission had its drama, but 
Apollo 11 was special. We had never 
landed on the moon before. Every-
thing was going according to plan, 
until something totally unexpected 
happened. Just before the astronauts 
were about to land, the onboard 
Apollo Guidance Computer (AGC) 
became overtaxed. The software’s 
priority displays (Display Interface 
Routines) of 1201 and 1202 alarms 
interrupted the astronaut’s normal 
mission displays, warning them of 
an emergency, letting NASA’s Mis-
sion Control understand what was 
happening and alerting the astro-
nauts to place the rendezvous radar 
switch in the right position. The pri-
ority displays gave the astronauts a 
go/no-go decision (to land or not to 
land). It quickly became clear that 

the software was not only inform-
ing everyone there was a hardware- 
related problem but also compensat-
ing for it.3 With minutes to spare, 
the decision was made to land. The 
rest is history. The Apollo 11 as-
tronauts became the first humans 
to walk on the moon; our software 
became the first software to run on 
the moon. The software experience  
(designing it, developing it, and 
learning from it for future systems) 
was at least as exciting as the events 
surrounding the mission.

The task at hand: develop the 
Command Module (CM) and Lunar 
Module (LM) software for the AGC. 
This included the systems software, 
shared by and residing within both 
the CM and the LM, and the flight 
software’s “glue” that defined, inte-
grated, and managed the relation-
ships between and among mission 
phases and routines. Updates to the 
software were continuously being 
submitted from hundreds of people 
over all the releases for each mis-
sion. Every change, with its reason 
for being documented, needed ap-
proval before being allowed into an 
official version. Everything needed 
to play together like a finely tuned 
orchestra, making sure there were 
no interface errors (data, timing, 
and priority conflicts) in the soft-
ware and between the software 
and the other systems involved (in-
cluding hardware, peopleware, and 
missionware).

The flight software was designed 
to be asynchronous so that higher-
priority jobs could interrupt lower-
priority jobs. This was accomplished 
by the developers’ assigning a unique 
priority to every process, ensur-
ing that all events in the software 
would take place in the correct or-
der and at the right time relative to  
everything else going on. Steps taken 

earlier within the software to create 
solutions within an asynchronous 
environment became a basis for so-
lutions within a distributed environ-
ment, once it became apparent that 
although only one process at a time 
executed in a multiprogramming 
environment, other processes in the 
same system—sleeping or waiting—
existed in parallel with the executing 
process.

With this as a backdrop, the pri-
ority displays were created, chang-
ing the human–machine interface 
between the astronauts and the 
software from synchronous to asyn-
chronous, where the flight software 
and the astronauts became paral-
lel processes within a distributed  
system-of-systems environment. Such  
was the case with the systems- 
software error-detection-and-recovery  
programs. They included the system-
wide kill and recompute from a safe 
place snapshot-and-rollback restart 
capabilities and the priority displays  
together with their human-in-the-
loop capabilities (such as that of be-
ing able to warn the astronauts and 
replace their normal displays with 
priority displays).

This would not have been 
possible without an integrated 
system-of-systems (and teams) ap-
proach and innovative contributions 
made by other groups. The hard-
ware team at MIT changed their 
hardware, and the mission-planning 
team in Houston changed their as-
tronaut procedures. Both worked 
closely with us to accommodate the 
priority displays in both the CM and 
the LM, for any emergency through-
out any mission. Mission Control 
was prepared. They knew what to do 
should the astronauts’ displays be in-
terrupted with priority displays.

In addition to the software devel-
oped by our team, “outside” code  
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could be submitted from other 
groups to become part of the flight 
software (e.g., from someone in the 
navigation analysis group). Once 
submitted to our team for approval, 
the code fell under our supervision. 
It was then “owned by” and up-
dated by our team to become part 
of, and integrated with, the rest of 
the software. As such, it had to go 
through the strict rules required for 
all onboard flight software. This 
ensured that all the flight software 
modules and all aspects of these 
modules were completely integrated 
and that there would be no interface  
errors within, between, and among 
all modules, both during develop-
ment and in real time.

When answers did not exist, we 
invented them. Dramatic events dic-
tated change. Requirements were 
“thrown over the wall” from mis-
sion experts to software experts. 
To those people who weren’t soft-
ware experts, software “magically” 
appeared within the AGC, inte-
grated and ready to go. What be-
gan as mission-related requirements 
for the software became more un-
derstood by everyone in the form 
of the application-oriented parts 
of the flight software that realized 
the mission requirements. Mission 
expertise moved on from mission  
experts to software experts and vice 
versa. Mission engineers and soft-
ware engineers necessarily became 
interchangeable, as did their lifecycle 
phases—suggesting that a system is 
a system, no matter from which dis-
cipline things originated. From this 
perspective, system and software de-
sign issues became one and the same.

Understanding the subtleties of 
developing real-time asynchronous 
flight software was left up to the  
systems-software experts. Since 
there was still no school for learning 

such things, having this kind of re-
sponsibility necessitated our creating 
and evolving methods, standards, 
rules, tools, and processes for de-
signing and developing the software, 
with a special emphasis on prevent-
ing errors. Although many errors 
were found during the software’s 
preflight phases, no onboard flight 
software errors were known to have 
occurred during flight on any Apollo 
missions. An invaluable position 
within the team was the Assembly 
Control Supervisor (ACS), caretaker 
of the code submitted for a particular 
mission for the LM or the CM (e.g., 
one for Apollo 8’s CM, another for 
Apollo 11’s LM). Each ACS used the  
Augekugel (eyeball) method in his 
designated area, looking for inter-
face errors and violations of cod-
ing rules, throughout all the official 
flight software releases and their in-
terim updates.

Since it was not possible (certainly 
not practical) to test the software by 
flying actual missions, it was neces-
sary to test it with a mix of hardware 
and digital simulations of every (and 
all aspects of an) Apollo mission. 
This included human-in-the-loop 
simulations (with real or simulated 
human interaction) and variations of 
real or simulated hardware and their 
integration, making sure a complete 
mission from start to finish would 
behave exactly as expected.

The Preventative 
Paradigm
One could not help but learn from 
these experiences. With initial fund-
ing from NASA and the US Depart-
ment of Defense, we performed an 
empirical study of the Apollo effort. 
The subject of errors took on a life 
of its own. Opportunities to make 
errors were not lacking, not to men-
tion every kind possible. I had the 

opportunity to have some responsi-
bility in the making of many of these 
errors, without which we would not 
have been able to learn as much as 
we did. These errors sometimes oc-
curred with great drama and fan-
fare, and often with a large-enough 
audience to never want such a thing 
to happen again!

What we learned was full of sur-
prises. For want of a better term, the 
process evolved into a “theory of er-
rors.” A general systems theory was 
derived from the errors and what we 
learned from them. This theory con-
tinues to evolve on the basis of the 
lessons learned from Apollo and later 
projects. From its axioms we derived a 
set of allowable patterns that became 
the basis for the Universal Systems 
Language (USL) together with its au-
tomation4 and preventative paradigm, 
“development before the fact.”

Unlike with languages typically 
used in traditional systems, instead 
of telling the computer what to do, 
the user defines all the system’s re-
lationships (the what). A formalism 
for representing the mathematics of 
systems, USL is based on the axioms 
of control of the systems theory and 
formal rules for their application. 
Every system is defined in terms of 
Function Maps (FMaps) and Type 
Maps (TMaps).5 FMaps define func-
tions and their relationships to other 
functions; TMaps define types and 
their relationships to other types. 
FMaps are inherently integrated 
with TMaps. Figure 1 shows an ex-
ample of a system defined in terms of 
FMaps and TMaps.

A USL system is defined from the 
very beginning to maximize the po-
tential for its own reuse; reliable sys-
tems are defined in terms of reliable 
systems. Three universal primitive 
structures, derived from the axioms, 
and nonprimitive structures, derived 
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ultimately from the primitive struc-
tures, specify each map. Each primi-
tive function resides at an FMap leaf 
node and corresponds to a primitive 
operation of a TMap type. Primitive 
types, each defined by a set of primi-
tive operations and axioms, reside 
at TMap leaf nodes (defining the 
system’s application domain). Each 
primitive-type operation may be re-
alized by an FMap on a lower layer 
of the system.

Correctness is accomplished by 
the very way a system is defined, by 
built-in language properties inher-
ent in USL’s grammar. A USL defi-
nition models both its application 
(e.g., an avionics or a cognitive sys-
tem) and properties of control into 
its own lifecycle. Mathematical ap-
proaches are often known to be dif-
ficult to understand and limited in 
their use for nontrivial systems. Un-
like other formal methods, USL ex-
tends traditional mathematics (e.g., 
mathematical logic) with a unique 
concept of control enabling it to 

support the definition and realiza-
tion of a system, no matter its kind 
or size. The mathematical formalism 
is hidden by language mechanisms, 
derived in terms of that formalism, 
that are semantics-dependent but 
syntax-independent.

Properties of preventative systems 
are especially important from the 
perspective of a system’s real-time, 
asynchronous (event-driven), and 
distributed behavior. Such a system 
inherently lends itself to being able 
to detect and automatically recover 
from errors in real time. Whereas on 
Apollo it was necessary for develop-
ers to explicitly schedule each pro-
cess in the flight software and assign 
to it a unique priority, with USL this 
is no longer necessary because pri-
ority is inherent in the grammar of 
FMaps and TMaps. Functions (and 
types) within a system are totally 
ordered, since every function (and 
type) has a unique priority.

Along the way, it became clear 
that a system defined with USL has 

properties that inherently support 
its own development “before the 
fact,” eliminating those things in-
cluding tasks, procedures, rules, and 
tools that previously were necessary 
but now become no longer needed, 
such as analyzing the code by hand 
to ensure it conforms to the system’s 
specification and design, and assign-
ing unique priorities to (and schedul-
ing) processes manually. We continue 
to discover new properties in USL- 
defined systems. One day, we real-
ized that the root problem with tradi-
tional approaches is that they support 
users in “fixing up wrong things after 
the fact” rather than in “doing things 
in the right way in the first place.” 
With USL’s preventative paradigm, 
instead of looking for more ways to 
test for errors and continuing to test 
for errors late into the lifecycle, the 
majority of errors, including all in-
terface errors (at least 75% of and 
the most subtle of all errors), are not  
allowed into a system in the first 
place, by the way it is defined.

FIGURE 1. This robot exploration system is defined with the Function Map (FMap) RunRobot and the Type Map (TMap) Robot. FMaps 

represent the dynamic world of actions (doing) by capturing functional, temporal, and priority characteristics. TMaps represent the 

static world of objects (being) by capturing type, atemporal, and importance characteristics. Each map is defined in terms of the 

universal primitive structures: Join (J) for dependencies, Include (I) for independencies, and Or (O) for alternatives. The robot explores 

its environment, recording its experiences in a reactive sensorimotor memory map represented by a distributed independent set of 

relations, using the TMap structure dIset.2



36 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING’S 50TH ANNIVERSARY

Testing for nonexistent errors 
becomes an obsolete endeavor. 
Whereas most errors are found 
(if ever found) during the test-
ing phase in traditional develop-
ment, with USL, correct use of  
the language prevents (“eliminates”)  
errors “before-the-fact” in a system’s 
definition and its derivatives (e.g., 
its software, since software is auto-
matically generated from its formal 
definition, inheriting all the proper-
ties of the definition from which it 
came). Instead of automation that 
supports the lifecycle, the lifecycle 
process itself can now be automated. 
Integration and traceability within a 
definition and from systems to soft-
ware are seamless.

USL’s automation hunts down er-
rors from the incorrect use of USL. 
Much of the design and all the code 
(and documentation) for a given 
software system are automatically 
generated, or commands could be 
automatically generated for another 
kind of resource (e.g., a robot). Be-
cause of USL’s open architecture, 
the automation can be configured 
to generate one of a possible set of 
implementations for a resource ar-
chitecture (the how) of choice (e.g., 
a language, a database package, or 
the users’ own legacy code). When 
an object type is changed, the status 
of all its functional uses (impacted 
by objects of that type) are demoted. 
The FMaps are then automatically 
reanalyzed by the analyzer, reestab-
lishing the status of that type’s uses.

Maintenance shares the same 
benefits. The developer never needs 
to change the code, since applica-
tion changes are made to the USL 
definition—not to the code—and 
target resource architecture changes 
are made to the generator environ-
ment configuration—not to the code. 
Only the changed part of the system 

is regenerated and integrated with 
the rest of the application. Again, 
the system is automatically analyzed, 
generated, compiled, linked, and ex-
ecuted without manual intervention.

M any of the pressing soft-
ware issues that existed 
in the earlier days still 

exist today. From our own work, we 
believe that this is largely because of 
the traditional paradigm. It has been 
around since the beginning and con-
tinues in force to this day.

Many well-known problems with 
the traditional paradigm need not 
exist with a preventative paradigm. 
Much of what seems counterintui-
tive with the traditional approach 
becomes intuitive with a preventa-
tive paradigm: the more reliable a 
system, the higher the productivity 
in its lifecycle. For each new prop-
erty discovered that, in essence, 
comes along for the ride, there is the 
realization of something no longer 
needed as part of the system’s own 
lifecycle. What works best for de-
veloping ultrareliable systems just 
happens to work best for systems in 
general, no matter the application.

Several kinds of systems have 
been developed with USL, includ-
ing “the development process of a 
system” as a system itself. Just like 
the systems that are developed with 
USL, USL’s automation is com-
pletely defined by itself (using USL), 
and it automatically generates it-
self. Looking toward systems of 
the future, university,6,7 research,8 
government,9 and commercial10,11 
organizations have conducted exper-
iments throughout USL’s evolution, 
comparing its approach with tra-
ditional approaches within diverse 
domains including formal meth-
ods,7 object technologies and CASE 

(computer-aided software engineer-
ing),12 domain analysis,8 and model-
driven development (e.g., UML,10,11 
SysML,10 and Cleanroom11). These 
experiments have gone from system 
functional requirements through 
operational validated code, each 
refereed by third-party observers  
or by the agency sponsoring the 
competition.

USL has stood the test of time, 
especially when medium to large-
scale systems are in the mix. In  
every case, reliability and produc-
tivity have been considered to be of 
highest importance.

The errors not only tell us how to 
build systems without them but also 
unexpectedly gave us a paradigm for 
the future. Educating people how 
to think and build systems in terms 
of the paradigm becomes the next 
challenge.

References
 1. L. Snyder and R.L. Henry, Fluency 

with Information Technology, 7th 

ed., Pearson, 2018, pp. 173–176.

 2. M. Hamilton, “The Language  

as a Software Engineer,” keynote 

presented at 40th Int’l Conf.  

Software Eng. (ICSE 18), 2018; 

https://www.youtube.com/watch?v 

5ZbVOF0Uk5lU.

 3. M. Hamilton, “Computer Got 

Loaded” (letter to the editor), Data-

mation, Mar. 1971; https://medium 

.com/@verne/margaret-hamilton 

-the-engineer-who-took-the- 

apollo-to-the-moon-7d550c73d3fa.

 4. “System: do_all_taxes,” Hamilton 

Technologies, 25 Aug. 2015; http://

htius.com/Examples/tax_example 

/documentation/do_all_taxes.op 

.collector-full.

 5. M. Hamilton and W. Hackler, “Uni-

versal Systems Language: Lessons 

Learned from Apollo,” Computer, 

vol. 41, no. 12, 2008, pp. 34–43.



 SEPTEMBER/OCTOBER 2018  |  IEEE SOFTWARE  37

 6. M. Hamilton and W. Hackler, 

“Universal Systems Language for 

Preventative Systems Engineering,” 

Proc. 5th Ann. Conf. Systems Eng. 

Research (CSER 07), 2007, paper 36.

 7. M. Ouyang and M.W. Golay, An 

Integrated Formal Approach for De-

veloping High Quality Software for 

Safety-Critical Systems, tech. report 

MIT-ANP-TR-035, MIT, Sept. 1995.

 8. B. Krut Jr., Integrating 001 Tool Sup-

port in the Feature-Oriented Domain 

Analysis Methodology, tech. report 

CMU/SEI-93-TR-11, Software Eng. 

Inst., Carnegie Mellon Univ., 1993.

 9. National Test Bed Software Engineer-

ing Tools Experiment—Final Report, 

vol. 1, US Dept. of Defense Strategic 

Defense Initiative Org., Oct. 1992, 

Experiment Summary, Table 1, p. 9.

 10. M. Hamilton and W. Hackler, “A 

Formal Universal Systems Semantics 

for SysML,” Proc. 17th Ann. Int’l 

Symp. Int’l Council Systems Eng. 

(INCOSE 07), 2007, paper 8.3.2.

 11. M. Hamilton, “Universal Systems 

Language (USL) and Its Automation, 

the 001 Tool Suite, for Designing and 

Building Systems and Software,” pre-

sentation at IEEE Computer Society / 

Lockheed Martin Webinar Series, 27 

Sept. 2012, slides 36–40.

 12. M. Schindler, Computer-Aided Soft-

ware Design: Build Quality Software 

with CASE, John Wiley & Sons, 

1990.

ABOUT THE AUTHOR

MARGARET H. HAMILTON is CEO of Hamilton Technologies. Her 

research interests include ultrareliable systems, error detection and 

recovery, formal theory, languages, and OSs. She graduated in math-

ematics and philosophy from Earlham College. She was in charge of 

the onboard flight software for NASA’s Apollo manned missions and 

was the director of the Software Engineering Division at MIT’s Instru-

mentation Laboratory. She led empirical studies of Apollo and later 

efforts, resulting in her systems theory of control and the Universal 

Systems Language with its preventative paradigm. Her awards in-

clude the Augusta Ada Lovelace Award, NASA Exceptional Space Act 

Award, Earlham College Outstanding Alumni Award, Computer History 

Museum Fellow Award, and Presidential Medal of Freedom awarded 

by President Barack Obama. Contact her at mhh@htius.com.

Read your subscriptions 
through the myCS 
publications portal at 

http://mycs.computer.org

Want to know more about the Internet?
This magazine covers all aspects of Internet computing, from programming and standards to security and networking.

www.computer.org/internet

n
o

v
em

b
er

 •
 d

ec
em

b
er

 2
01

5

IC-19-06-c1    Cover-1  October 9, 2015 3:26 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G
 

N
O

vEM
bER • D

ECEM
bER 2015 

Th
E IN

TERN
ET O

f YO
U

 
vO

l. 19, N
O

. 6 
w

w
w

.CO
M

PU
TER

.O
RG

/IN
TERN

ET/

m
a

r
c

h
 •

 a
p

r
il

 2
01

6

IC-20-02-c1    Cover-1  February 11, 2016 10:30 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G
 

M
a

RCh
 • a

PRIl 2016 
ExPlO

RIN
G

 TO
M

O
RRO

w
’s IN

TERN
ET 

vO
l. 20, N

O
. 2 

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

ja
n

u
a

r
y 

• 
fe

b
r

u
a

r
y 

2
01

6

IC-20-01-c1    Cover-1  December 7, 2015 1:45 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G
 

ja
N

U
a

RY • fEbRU
a

RY 2016 
IN

TERN
ET ECO

N
O

M
ICs 

vO
l. 20, N

O
. 1 

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

m
a

y 
• 

ju
n

e 
2

01
6

IC-20-03-c1    Cover-1  April 13, 2016 8:45 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G
 

M
aY • jU

N
E 2016 

ClO
U

D sTO
R

aG
E 

vO
l. 20, N

O
. 3 

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

ju
ly

 •
 a

u
g

u
s

t 
2

01
6IEEE IN

TERN
ET CO

M
PU

TIN
G

 
jU

lY • a
U

G
U

sT 2016 
M

Ea
sU

RIN
G

 Th
E IN

TERN
ET 

vO
l. 20, N

O
. 4 

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/


