
FOCUS: GUEST EDITORS’ INTRODUCTION

20	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

50 Years of Software
Engineering
Hakan Erdogmus, Carnegie Mellon University

Nenad Medvidović, University of Southern California

Frances Paulisch, Siemens Healthineers

FOCUS: GUEST EDITORS’ INTRODUCTION

	 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE� 21

DEFINED PLAINLY, SOFTWARE
engineering is the building of non-
trivial software-intensive systems in
disciplined ways subject to a set of
constraints. It’s widely recognized
as a sociotechnical process. On the
social side, it involves a significant
people and team component. On the
technical side, its theoretical under-
pinnings are computer science and,
in particular, the science of pro-
gramming. However, it’s much more
than just programming.

The Uniqueness of
Software Engineering
Software engineering is a unique line
of endeavor in a number of ways.
Some of these ways naturally stem
from the uniqueness of software
itself. Its relatively few technical
principles—separation of concerns,
isolation of change, abstraction,
modularity and reuse, to name
some—have been applied to result
in thousands of languages, meth-
ods, techniques, and tools. More
than three decades ago, Fred Brooks
argued eloquently that none of our
solutions, no matter how ingenious,
will ever be able to fully eliminate
the four fundamental difficulties—
corresponding to the four funda-
mental sources of uniqueness—that
software engineers face: software’s
complexity, conformity, change-
ability, and invisibility.1 Neverthe-
less, we’re still able to build systems
of startling sophistication that, de-
spite their imperfections, power the
modern world.

A central aspect that makes soft-
ware engineering unique is soft-
ware’s invisibility; it’s not subject to
the laws of nature. You can build a
software system with infinitely intri-
cate and detailed connections. This
is unheard of in the physical world,
which has hard constraints. For

example, you can put only so many
transistors on a silicon wafer that’s
a fraction of a square inch. To fur-
ther complicate things, a tiny, seem-
ingly local error—a single bit—can
potentially have huge consequences
for the physical system the software
controls.

Software engineering is also a
unique brand of engineering be-
cause, as a discipline, we’re not
always … disciplined. Our princi-
ples, methods, techniques, and tools
are applied with various degrees of
diligence. Our systems are notori-
ously unevenly documented. Case
studies, anecdotes, and memes about
software bugs and failures abound.
Some are amusing because they’re
caricatures of true events whose
consequences aren’t that severe.
Others are not because they’re true
and put living beings and assets of
considerable economic or intangible
value in peril.

Unlike many other engineering
disciplines, software engineering is
extremely broad. It’s the foundation
of a huge part of our everyday lives.
Its construction is perhaps more like
creating and evolving an architec-
tural marvel than building a bridge
in civil engineering, constructing a
motor in mechanical engineering, or
creating new molecules in chemical
engineering.

Software is prone to being tam-
pered with from thousands of miles
away. This can cause the systems it
controls to be prone to hacking in
uniquely dangerous, devastating, and
undetectable ways that wouldn’t be
possible in its absence.

Software is amenable to auto-
mated analysis because software
itself is data, and all the artifacts
generated during its production are
also software. This bootstrapping
quality creates unique opportunities

to study and understand both soft-
ware’s behavior and the nature of
its underlying engineering process in
ways not readily possible with physi-
cal artifacts.

Finally, the software engineering
community’s nature and diversity—
or, you might argue, the lack of a co-
herent community—make the field
unique. Many persons developing
software are self-taught and didn’t
learn their craft “by the book.” Un-
like in other engineering disciplines,
the term “software engineer” doesn’t
signify a widely accepted set of qual-
ifications backed up by standards,
proper apprenticeship, accreditation,
or certification. Significant gaps exist
among the academics who teach
software engineering, the research-
ers who study it, and the profes-
sionals who practice it. Although
all this leads to a diversity of opin-
ions, ideas, and perspectives that
fuel software innovation, it creates
a multitude of irreconcilable dis-
agreements that sometimes block the
progress achievable through com-
mon understanding.

A Uniquely Diverse
Community
A sign of a well-established, ma-
ture discipline—and community—is
agreement on how to solve common
problems. In software engineering,
however, solutions tend to depend
highly on the background and ex-
perience of the person solving the
problem, rather than on a common
understanding across the community.
At times this makes the field more
craft-like than engineering-like. This
fuzziness sometimes stems from the
inherent multiplicity of dimensions
you must consider in a solution and,
in each dimension, a whole spectrum
of choices that appear to work to
widely varying degrees depending on

22	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

the problem’s context and what’s ac-
cepted as “good enough.”

An infinite number of combi-
nations of unpredictable viability
and effectiveness arise from such
choices—for example,

•	 the degree of consideration of
underlying business models,
from one-time licensing to sub-
scription services;

•	 the type of delivery model, from
discrete delivery of a single prod-
uct to a continuous value flow of
features in an evolving product;

•	 the abstraction level, from low-
level coding to model-driven
approaches;

•	 the management of intellectual
property, from proprietary ap-
proaches to a high degree of
openness and transparency;

•	 the architectural choices, from
monolithic systems to a decen-
tralized set of systems or micro
services; and

•	 the level of security, from none
to approaches more oriented
toward prevention or detection.

Even when fads become clear trends
that start to establish themselves
and push systems toward particu-
lar regions of the solution space,
the best solutions’ context depen-
dence still prevents straightforward
generalizability.

Extreme points in the solution
space give rise to dogma and dichot-
omies. Not surprisingly, the truth
often lies somewhere in the middle,
based on balancing a large number
of trade-offs. The solution also de-
pends on the nature of the problem:
whether it’s simple, complicated,
complex, or chaotic, to use the
Cynefin framework’s terminology.2
Solutions that are appropriate for
complicated problems are typically

inappropriate for complex or cha-
otic problems. The first step for us as
software engineers is to be aware of
such differences.

A clear manifestation of diverse
perspectives is the existence of dif-
ferent camps that still disagree on
fundamental issues and questions,
such as these:

•	 Is agile software development
better than carefully planned de-
velopment, and if so, under what
circumstances?

•	 Are formal methods essential, or
even useful, or are they just an
intellectual exercise that gets in
the way of building real-world
systems?

•	 Should a system’s architecture
be designed, or does it emerge
organically during development?
If the former is the case, how,
when, and to what extent is ar-
chitectural design appropriate?

•	 Are standards critical to soft-
ware engineering’s maturation
as a discipline, or are they just
an impediment to pragmatic
development?

•	 Should software development
rely on up-front planning or on
a more adaptive approach in
which you strive to decide at the
last responsible moment?

•	 Does success depend pri-
marily on technical skills or
peopleware?

•	 What constitutes good software:
software that appears to work
most of the time and does the
job? Or delights users in special
ways? Or never crashes? Or is
easy to understand and main-
tain? Or has an elegant design?
Or is thoroughly tested? Or is
proven to be correct? Or is a
combination of some or all of
these criteria?

•	 Should systems be decomposed
with respect to functionality or
dataflow?

Software engineering provides
some foundations for answering
these questions and many more like
them. However, an ever-increasing
number of moving parts and con-
siderations are layered on top of
those foundations. Both contempo-
rary software engineering research
and novel field practices address
the themes underlying these ques-
tions. Alas, the answers are chal-
lenged by the fact that each of us
has his or her own biases regarding
these themes, and the lion’s share of
self-taught practitioners are often
outside the academic and research
community’s reach. Without tight
integration between research and
practice, how can we evaluate the
associated trade-offs in a systematic
and widely agreed-upon manner, as
we would do in a mature engineer-
ing discipline?

A Uniquely Distinct
Beginning to Celebrate
Another unique aspect of software en-
gineering is that it has a birth date of
sorts: Monday, 7 October 1968. On
that day, the first software engineer-
ing conference, sponsored by NATO,
opened in Garmisch, Germany.3 This
isn’t to say that software engineering
didn’t exist before Garmisch. Many
well-documented developments pre-
date it. Complex software was cer-
tainly being written—and, in fact,
engineered—well before 1968. For
example, one of the foundational
readings in software engineering—
Fred Brooks’ The Mythical Man-
Month—describes a large software
engineering effort at IBM from the
mid 1960s.4 But the Garmisch confer-
ence was instrumental in introducing

	 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE� 23

software engineering as a discipline
and indirectly kicking off the massive
pedagogical, research, governmental,
and commercial enterprise that soft-
ware engineering is today.

And that, of course, inspired
this theme issue marking software
engineering’s 50th birthday. We
collected a range of contributions—
from pioneers and well-established
software engineers, to younger con-
tributors whose imprint on the field
is perhaps yet to come. These contri-
butions come in a variety of formats
that provide a balanced look at our
field’s past, present, and likely fu-
ture. The topics include both time-
less ideas that appeared to fade for a
while, only to pop up again in a new
incarnation, and entirely new para-
digms that have disrupted the field.

According to many folks, the term
“software engineering” appeared
before 1968 courtesy of Margaret
Hamilton, a software pioneer who
made pivotal contributions to put-
ting a human on the moon. As Ken
Power tweeted during Hamilton’s
keynote address at the 2018 Interna-
tional Conference on Software Engi-
neering, “Neil Armstrong may have
been the first to walk on the moon,
but Margaret Hamilton’s software
was the first to run on the moon.”5
So, it’s only apt that we include a
contribution by this celebrated pio-
neer. Hamilton makes the case for a
return to a preventive approach for
high-reliability software systems.

Other topics in the theme issue
include

•	 fresh perspectives on the history
and state of software engineer-
ing, by Grady Booch and Man-
fred Broy, expanding on and
complementing similar accounts
from one and two decades
ago;6,7

•	 bridging the gap between re-
search and practice, by Victor
Basili, Lionel Briand, Domenico
Bianculli, Shiva Nejati, Fabrizio
Pastore, and Mehrdad Sabetza-
deh, and by Claire Le Goues,
Ciera Jaspan, Ipek Ozkaya,
Mary Shaw, and Kathryn Stolee;

•	 the state of the practice in engi-
neering secure software systems,
by Laurie Williams, Gary
McGraw, and Sammy Migues;

•	 software analytics’ role in
enhancing our understand-
ing of software engineering,
by Tim Menzies and Thomas
Zimmermann;

•	 the mainstreaming and evolution
of modern software development
methods, by Rashina Hoda,
Norsaremah Salleh, and John
Grundy, and these methods’
emerging extensions that
connect the software develop-
ment process with information
technology governance, by Erik
Dörnenburg; and

•	 the history and changing needs
of software engineering educa-
tion, by Nancy Mead, David
Garlan, and Mary Shaw.

But that’s not all. Our interview
piece with another pioneer, Barry
Boehm, will take you down memory
lane for a firsthand account of lesser-
known milestones and their influ-
ences. Look also for complementary
contributions in IEEE Software’s
On DevOps, Practitioners’ Digest,
Redirections, Reliable Code, and
Software Technology departments.
And, as a special treat, Željko Obre-
nović has paired quotes from IEEE
Software’s early days with quotes
from more recent issues to highlight
how things have changed, or how
they’ve remained the same the more
they’ve changed.

T he world of computing is
changing at an accelerated
pace. The relatively recent

developments in data-driven com-
puting (big data), powerful com-
modity platforms (the cloud), the
Internet of Things, cyber-physical
systems, AI and machine or deep
learning, and ever-shorter feedback
loops and continuous learning will
likely persist for some time. Once
the hype that has accompanied each
of these inevitably dies down, the
opportunities for real science and
engineering will still remain. For ex-
ample, although many successful ex-
amples of data-driven and intelligent
systems exist, and despite the fact
that they’re predominantly software,
we still don’t know the best way to
engineer them from first principles.
Common patterns will emerge from
successful examples and get codified.

As software engineers, we need
to seize these opportunities and fig-
ure out the role these developments
might play in advancing software
engineering. This has already been
happening—a look at the recent
software engineering research lit-
erature will confirm as much. Con-
versely, we also need to figure out
how software engineering can help
bring out the full potential of the
advancements in these areas of com-
puting. This task is much more dif-
ficult but will pay off handsomely
in the many—today perhaps even
unimaginable—advances that are
ahead of us.

We hope that these theme articles il-
luminate, encourage reflection and de-
bate, and spawn new ideas. Enjoy!

References
	 1.	F.P. Brooks, “No Silver Bullet: Essence

and Accidents of Software Engineer-

ing,” Computer, vol. 20, no. 4, 1987,

pp. 10–19.

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

	 2.	D.J. Snowden and M.E. Boone, “A

Leader’s Framework for Decision

Making,” Harvard Business Rev.,

Nov. 2007, pp. 69–76.

	 3.	P. Naur and B. Randell, eds., Soft-

ware Engineering: Report on a

Conference Sponsored by the NATO

Science Committee, Garmisch,

Germany, 7th to 11th October 1968,

NATO, 1968; http://homepages.cs

.ncl.ac.uk/brian.randell/NATO

/index.html.

	 4.	F.P. Brooks, The Mythical Man-

Month, Addison-Wesley, 1975.

	 5.	K. Power, tweet, 31 May 2018;

https://twitter.com/ken_power/status

/1002132724583469056.

	 6.	A. Brennecke and R. Keil-Slawik,

eds., Position Papers for Dagstuhl

Seminar 9635 on History of Software

Engineering, 1996; https://www

.dagstuhl.de/Reports/96/9635.pdf.

	 7.	N. Wirth, “A Brief History of Soft-

ware Engineering,” IEEE Annals

History of Computing, vol. 30,

no. 3, 2008, pp. 32–39; https://

www.inf.ethz.ch/personal/wirth

/Miscellaneous/IEEE-Annals.pdf.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

HAKAN ERDOGMUS is a teaching professor of electrical and

computer engineering at Carnegie Mellon University’s Silicon

Valley campus. His areas of specialization include the econom-

ics of software engineering, value-based software engineer-

ing, empirical studies of software engineering practices, and

software engineering education. Erdogmus received a PhD in

telecommunications from INRS-Université du Québec. He’s

a Senior Member of IEEE, a Golden Core member of the IEEE

Computer Society, and a member of ACM. Contact him at

hakan.erdogmus@sv.cmu.edu.

NENAD MEDVIDOVIĆ is a professor in the University

of Southern California’s Computer Science Department.

His research interests are in architecture-based software

development. Medvidović received a PhD from the Depart-

ment of Information and Computer Science at the University of

California, Irvine. He’s an ACM Distinguished Scientist and an

IEEE Fellow. Contact him at neno@usc.edu.

FRANCES PAULISCH is responsible for Siemens Health-

ineers’ company-wide Software Initiative. The related activi-

ties include best-practice sharing, training, and leveraging

internal and external networks on software-related topics.

Paulisch received a PhD in software engineering from the

University of Karlsruhe. She’s a member of ACM, IEEE, and

Gesellschaft für Informatik. Contact her at frances.paulisch

@siemens-healthineers.com.
Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

Subscribe today for the latest in computational science and engineering research, news and analysis,
CSE in education, and emerging technologies in the hard sciences.

www.computer.org/cise

