
0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 125

SOFTWARE
ENGINEERING

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

Tammy Bütow on
Chaos Engineering
Edaena Salinas

Edaena Salinas: Let’s look at moti
vation, because some of the worst
outages lead to the introduction of
chaos engineering. You worked at
Dropbox. Can you talk about its
worst outage?

Tammy Bütow: The worst outage at
Dropbox is publicly available on the blog
[https://blogs.dropbox.com/tech/2014
/01/outage-post-mortem]. It was in 2014
and went for multiple days. It was re-
lated to the databases. The vice presi-
dent of engineering wrote a full review
of what had happened, and explained
the action items to make sure that it
didn’t happen again.

One of those action items was in-
jecting failure to ensure that everything

was more reliable. The idea of injecting
failure is similar to a flu shot, where you
inject a bit of harm, but it makes you
stronger. You are able to withstand it
because you have injected it frequently.
A lot of people learn it the hard way.

The purpose of injecting failure is to
learn about what could go wrong,
correct?

Yeah. Infrastructure, whether on the
premises or in the cloud, is going to fail
in some way: hardware failure, power
failure, firmware failure, kernel issues,
or issues with your own tooling. There
are many things that can go wrong.

We wish that cloud infrastructure
was 100 percent available and worked

perfectly, but that’s not true. We need to
build our infrastructure knowing that
things will break. It’s much better if you
control the injection of failure, observe it,
monitor it, learn from it, and use that to
make your infrastructure more reliable.

You learn so much from doing
chaos-engineering experiments. Do
something simple, like shut down a
server. That tests your automated self-
healing. Regularly shut down a data-
base replica—to test your clone process,
instead of only testing when a replica
[fails on its own]. Maybe that happens
once every few months, but if you test
it once a week or even more frequently,
that’s so much better.

How you go about it depends on
how big your infrastructure is. How

From the Editor

In Episode 325 of Software Engineering Radio, host Edaena Salinas talks with

guest Tammy Bütow of Gremlin, a provider of failure injection as a service, about

chaos engineering. Previously, Bütow worked at Dropbox on cyber liability engi-

neering and at DigitalOcean on cloud infrastructure as a service. She also cofound-

ed Girl Geek Academy. The excerpt here covers Tammy’s background in failure

testing, the nature of failure injection, what we can learn from chaos experiments,

how to work through failure scenarios to harden your infrastructure, and their

value in training operations staff. Portions not included here go into more depth

about the hands-on training Tammy conducts, the use of monitoring tools, and how

chaos tooling is evolving to look more like other areas of software development. To

hear the full interview, visit http://www.se-radio.net or access our archives via RSS

at http://feeds.feedburner.com/se-radio.

SOFTWARE ENGINEERING

126 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

frequently you’re going to be injecting
failure and what kind of failure you in-
ject depend on whether you have tens
of thousands of servers or hundreds of
servers. But everybody can learn from
failure injection.

How does testing differ from chaos
engineering?

I started to work at a bank after uni-
versity. In a bank you have to do di-
saster recovery tests once a quarter
to hold your banking license. It’s a
compliance requirement. If you can’t
prove that you can fail over your en-
tire bank, then you will have problems
with the regulators, and you will be
shut down.

That was where I was introduced to
the idea of live-scale failover. You fail
over everything. You must test that
your entire team can operate, even
if your office wasn’t available and it
was over a weekend. You go to a dif-
ferent building for two days and fail
over everything to make sure that, if
something went wrong at your head-
quarters, you could keep the bank
running.

That was my introduction. Later,
when I was working as an engineer,
whenever I built something it was
always too slow. I [realized that I]
couldn’t rely on the infrastructure
underneath it for it to work well.
That sent me further and further
backward.

I spent a lot of time working with
the database, and even further back,
to hardware, networking, security. It
is very helpful to have a good under-
standing from the very top level—
JavaScript—all the way back down
to the power within the datacenter
or your cloud infrastructure. Go-
ing through every single level, that’s
where you can think about failure in-
jection across the whole stack.

What’s the role of size in deciding
whether to do chaos engineering?

Often you have a lot of machines, but
you don’t have that many people. That’s
why you need to do a lot of automation
work, and you need to really under-
stand the failure modes.

There are engineers responsible for
maintaining the fleet, reliability, avail-
ability, and durability. But not all of
them have been there for many years.
Some of them have only been there a
few months, some for one year, and a
few longer than that. And somebody
who had been there for a few years may
have just left with a lot of knowledge.

With large-scale infrastructure,
there’s a lot of knowledge that needs
to be transferred throughout the team.
And with large scale, you usually don’t
have many more engineers than you do
for small-scale infrastructure, but you
have a lot more that you need to do.

You can use failure injection as on-
call training. Run a game day having
10 to 15 engineers in a room together,
talking through failure injection sce-
narios. You can whiteboard it. Say, “If
we injected failure at this point, then we
would expect this and this to happen,”
and then, “We expect this and this to
be the downstream impacts, and the
cascading failure could look like this.”
And then you could say, “We feel pretty
confident that we could inject this fail-
ure and everything would be all right.”

Your hypothesis is, “We can shut
down this replica for this database, and
the clone should kick off. Everything
should be fine, and within this period
of time I would be back to having a pri-
mary with two replicas.” That’s a sce-
nario. Within the game day you would
inject that, and then see how it goes.

There will be other scenarios where
you say, “We’re not yet ready to run
through that because we need to fix
other parts of our infrastructure to

make it more reliable so that it can
withstand that failure.” That’s what
you’re going to learn when you do these
exercises.

You can also do chaos engineering at
small scale, right?

Yeah. It’s super-important to do it at
small scale. One of the common mis-
takes running small-scale infrastruc-
ture is not having enough machines,
putting everything on three or four
servers, not spreading things out, not
having redundancy, and not having
backups. That’s likely where you get
into trouble. Because you don’t yet have
a ton of users, you don’t need as many
servers as you would to handle a large
amount of traffic. But if you don’t have
backup and redundancy in place, and
you haven’t thought about how to fail
over your services, then it’s going to be
impossible to do so [when you need to].

Small-scale infrastructures that
haven’t invested in building out those
things can have much longer downtime
and more risk of data loss because they
haven’t thought through the backup
scenarios for their database infrastruc-
ture. Maybe they have not tested the re-
store process to see if they can restore
their backups. They often do not have
very good incident management in
place to know that that “we’re currently
experiencing an issue; we need to do
[steps] to fix it.”

A lot of these things do not take a
ton of time to set up, but require you
to think about it in a different way. It
often comes down to funding, because
you must pay extra to purchase these
instances.

But that’s the exciting thing about
cloud infrastructure now: it’s becoming
more and more affordable, and you’re
able to purchase smaller instances. You
can spread out your services across a
number of instances. You understand

SOFTWARE ENGINEERING

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 127

SOFTWARE ENGINEERING RADIO

Visit http://www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
 • 330—Kevin Goldsmith and host Travis Kimmel converse about

Conway’s law.
 • 328—Bruce Momjian talks with host Robert Blumen about SQL query

planning and optimization in Postgres.
 • 326—Dmitry Jemerov and Svetlana Isakova discuss the Kotlin program-

ming language with host Matthew Farwell.

UPCOMING EPISODES
 • Natalie Silvanovich shares her views on attack surface reduction with host

Kim Carter.
 • John Doran tells host Jeremy Jung how a salon-booking service provider

fixed its broken development process.
 • Saša Jurić goes in depth into the Elixir programming language with host

Nate Black.

that failure will happen, but you are
building your infrastructure to handle
that. It used to be much harder when
you had to buy bare metal. You could
only afford at most three servers, and
then when they would fail you had to
get them repaired. Now it’s totally dif-
ferent with cloud infrastructure.

To what extent is this a lackof
knowledge issue, and to what extent
is it a cost issue?

It’s not a significant cost. Servers are
getting cheaper all the time. Look at
the other side of the problem: if you
pay this much for your infrastructure,
what would happen if you were down
for three days? That is pretty common.
Even weeklong outages happen. These
happen to some of the biggest compa-
nies and small companies as well.

What happens to your business if
you’re down for three days? Your cus-
tomers are going to be unhappy, and
you might lose them. If you invest in re-
liable infrastructure it might cost a bit
more for your monthly bill, but you are
going to have a more reliable service.
Your customers will be happier because
they’re not going to experience down-
time or data loss.

The nature of the product and
project matters. If it’s a photo app,
maybe it’s not that critical, and
you’re not going to lose customers;
they’re just going to be annoyed. But
if you’re dealing with a hospital or
banking system, it’s more critical. Is
that right?

Even if it was a photo app, if you are
down for a day or two, and somebody
trusted their photos in there and can-
not access their photos, then they might
lose trust in your business. They may
start to think, “Do I need to have a
backup service to hold another set of

my photos? If so, then why am I paying
for this service?” They might worry that
if it was down one day, does that mean
that it’s not reliable and that in the
future it may lose data?

These are things people think about
when they’re looking at whether to use
a service. It’s so easy for people to cre-
ate new businesses these days. Building
more reliable services can help you ac-
quire new customers and make money,
because you’re showing people they can
trust your service.

Companies now have available in
frastructure such as Amazon Web
Services (AWS). Are companies more
equipped to recover from failure if
they leverage those systems?

Yeah, exactly. There was a big AWS S3
outage last year (that I was on call for).
One region of S3 was impacted. There
are several regions that you can use, or

you can have a backup mechanism in
place so that if that region goes down,
then you have some type of failover
ready. It’s important that we think this
way these days.

How do you teach chaos engineering?

This year I taught a chaos-engineering
boot camp. What we do is to create a
cluster for everyone, because often peo-
ple say, “The only way to learn chaos
engineering is on production.” You can
actually start chaos engineering first on
a demo environment. Then you can also
do it on staging. And then once you feel
confident, you can do it on production.

But what I do for the chaos-
engineering boot camp is create a demo
environment. I spin up a Kubernetes
cluster for everybody. I’ll have three
people working on a cluster together,
and then I give them access to my
GitHub repository Reaper, which has

SOFTWARE ENGINEERING

128 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

chaos-engineering experiments. And I
deploy a demo microservices app from
Weaveworks, which is an e-commerce
store. When you come into the work-
shop, you’ve got this demo environ-
ment, you can see the e-commerce site
running, and then you can start to in-
ject the failure. This teaches you a lot
about running chaos-engineering ex-
periments in a safe way.

ABOUT THE AUTHOR

EDAENA SALINAS is a software engineer at Microsoft. Contact her at

edaena@gmail.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications Office: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE Software by visiting www.computer.
org/software.

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for profit; 2) includes this notice and a full citation to the original work on
the first page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright no-
tice and a full citation to the original work appear on the first screen of the
posted copy. An accepted manuscript is a version which has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or promo-
tional purposes or for creating new collective works for resale or redis-
tribution must be obtained from IEEE by writing to the IEEE Intellec-
tual Property Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or
pubs-permissions@ieee.org. Copyright © 2018 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first
page is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923.

www.computer.org/itpro

Technology Solutions for the Enterprise

