
FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

14 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

INTERVIEW

A Conversation with
Barry Boehm
Recollections from 50 Years of Software
Engineering

Hakan Erdogmus and Nenad Medvidović

IEEE Software: This magazine is
celebrating the 50th anniversary of
the 1968 NATO Software Engineer-
ing Conference, an important mile-
stone. How did you first hear about
that conference?

Barry Boehm: In 1968, I was work-
ing at the RAND Corporation, the
US Air Force’s think tank, as head
of a computer-systems-analysis
group, when a RAND colleague, Jim
Babcock, returned from participat-
ing in the NATO Software Engi-
neering Conference. He gave a talk

on the conference and its assessment
of the increasing role of software in
NATO command-and-control (CC)
operations, and the need for better
ways of improving its reliability and
productivity. I had been participat-
ing in some of RAND’s studies on
the use of computers in Air Force
CC, and was able to take advantage
of a trip to Europe to meet with some
of the principals in the NATO con-
ference, particularly Friedrich Bauer,
the conference chair, Brian Randell,
the coauthor of the conference report,
and Edsger Dijkstra, whose 1968

contributions also included his
famous “Go To Statement Consid-
ered Harmful” letter to the Commu-
nications of the ACM and his THE
multiprogramming system.

What were some interesting insights
from that trip?

The session with Dijkstra was a
unique experience. I would ask a
question—for example, on improv-
ing software reliability—and there
would be about two minutes of si-
lence, followed by a fully organized

Barry W. Boehm is the TRW Professor of Software Engineering

and the director of the Center for Systems and Software Engi-

neering at the University of Southern California. He’s a pioneer of

software engineering, with seminal contributions in software eco-

nomics, process, requirements, and architecture. He has received

the ACM Distinguished Research Award and the IEEE Harlan D.

Mills Award; he’s a Fellow of ACM, IEEE, AIAA, and INCOSE and a

member of the National Academy of Engineering.

INTERVIEW

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 15

minilecture on the futility of trying
to estimate software reliability by
extrapolating defect frequencies, and
on the need to precisely specify the
software objectives and to logically
prove that the resulting software sat-
isfied the specified objectives. There
were similar silences and minilec-
tures on the shortfalls of popular
programming languages, such as
Fortran with its GOTOs and global
variables, and with responses to
other questions.

What was the fallout from the
NATO conference and the follow-up
to the meeting in Europe?

In 1969, I was asked to provide
a briefing on the information-
processing aspects of Air Force space
missions as part of an Air Force Sci-
entific Advisory Board meeting on
military preparedness in space. The
briefing content was published as a
RAND report called Some Informa-
tion Processing Implications of Air
Force Space Missions: 1970–1980.1 It
included data on trends in information-
processing aspects of Air Force and
NASA space missions, and also drew
on key issues from the January 1969
published report on the 1968 NATO
conference.2

In 1970, the Air Force prepared
to perform a major year-long mis-
sion analysis on the future of Air
Force CC information processing,
with recommendations for improved
management processes and infor-
mation technology research to meet
the determined needs. The Air Force
asked RAND to lend me to the Air
Force for a year to run the mission
analysis, which it did. The study
team included an Air Force colo-
nel with extensive CC experience
as deputy leader, and about a dozen
full-time and part-time Air Force CC

and information-processing experts
from the Air Force and some of its
study organizations. Each of us had
copies of the 1968 and 1969 NATO
conference reports,2,3 and the proj-
ect had a budget for industry studies.
Its title was CCIP-85, and it pro-
duced an overview report plus five
detailed reports on CC information-
processing hardware, software,
staffing, management, and CC op-
erational trends, opportunities, and
challenges.

The most valuable inputs to the
study were week-long visits to the Air
Force’s major CC centers, the Stra-
tegic Air Command (SAC), Tacti-
cal Air Command (TAC), and Air
Defense Command (ADC), to ob-
serve how they operated and what
information-processing opportuni-
ties and challenges they saw for the
future. Originally, the expectation
was that the greatest needs and op-
portunities were for more powerful
computing, large-screen displays,
and data storage and retrieval, but
consistently across the CC centers,
the biggest needs were for more
cost-effective, rapid-response, re-
liable, scalable, and interoperable
ways of developing and evolving
large CC software systems. Also,
a trend analysis found that CC
information-processing software costs
were growing much faster than
hardware costs, going from near
zero in 1960 to 30 percent of total
costs in 1971. A projection of the
hardware-to-software cost percent-
ages indicated that the ratio would
go from 30:70 in 1971 to 70:30
by 1985.

What main recommendations came
out of that study?

Some major study recommenda-
tions were to significantly increase

Air Force investment in improved
approaches to software develop-
ment and evolution. These also
drew on recommendations from the
two NATO conferences. The top
recommendation was for greater
research into system design and ex-
ercise technology. This extended the
NATO recommendations on struc-
tured programming into structured
analysis and rapid CC prototyping.
Next highest was for software and
system certification. This extended
the NATO emphasis on software
reliability to include security and
safety. The third of the top three was
for research into software timeli-
ness and flexibility, into what is now
called set-based design for avoidance
of brittle point-solution architec-
tures. Further recommendations were
for increased research investments
in computer hardware survivabil-
ity, data security, multisource data
fusion, and image processing.

What evidence was provided to
support those recommendations?

The evidence included summaries of
the SAC, TAC, and ADC CC system
challenges and opportunities, and the
results of the quantitative studies of
software and hardware costs, sched-
ules, reliability, maintainability, and
availability. The study had a steering
group, including three CC-experienced
Air Force major generals, who helped
focus the recommendations and
helped vouch for their value.

What were these initiatives’ results
in terms of concrete actions, better
awareness, the community coming
together, or what-have-you?

They helped the Air Force Research
Laboratories to significantly increase
their investments in CC hardware

INTERVIEW

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

and software technologies. Later,
I published an article in the widely
read journal Datamation called
“Software and Its Impact: A Quanti-
tative Assessment” that drew further
attention to the software problems
and opportunities, and also refer-
enced the NATO reports on soft-
ware reliability and management.4
This also involved me in becoming
the co-program chair with Tony
Hoare, one of the NATO conference
principals, of the large 1975 ACM/
IEEE Conference on Software Reli-
ability, often called ICSE 0.

ICSE 0, as a precursor to the Interna-
tional Conference on Software Engi-
neering, right?

Yes. The NATO reports’ strong con-
cern with software reliability spawned
a large 1973 IEEE Conference on
Software Reliability in New York
City. Subsequently, IEEE and ACM
combined to sponsor a follow-up
April 1975 ACM/IEEE Conference on
Software Reliability in Los Angeles. It
was a large conference: 62 papers and
over 600 attendees. One outcome was
an agreement to broaden the scope
of future conferences to cover the
whole of software engineering. This
was picked up by IEEE, which held
the 1st National Conference on Soft-
ware Engineering in September 1975
in Washington, DC. Due to the short
lead time and US focus, NCSE 1 was
much smaller (11 papers, 10 from the
US; around 100 attendees). With lon-
ger lead times, sponsorship by both
ACM and IEEE, and an international
outreach, ICSE 2 in San Francisco in
October 1976 was much larger, and
the ICSE series was on its way.

Previously you mentioned quantitative
studies to support the recommended
changes. That sounds nontrivial. Was

this common? Or was it the beginning
of a new, more rational approach?

During 1973, I was captivated by the
prospect of making software engi-
neering into a quantitative discipline.
As this would have been hard to do
at RAND, whose largest software
team was four developers, I explored
the prospect of doing this with the
companies that provided data for
the CCIP-85 software study con-
tracts. This led to my being offered
the position of Director of Software
Research and Technology at TRW,
which I accepted in September 1973.

TRW was a stimulating place to
work. It had enlightened managers,
highly talented system and software
engineers, and a culture of continu-
ous learning and improvement. In
1973, it was in the top five in the
Datamation list ranked by annual
software income, and subsequently
reached number two, second only to
IBM. At the time, I thought that a
fully quantified software engineering
methodology would be complex and
take a good five years to work out.
This was by far my largest under-
estimate of a software-related proj-
ect, as I’m still at it today.

So how much progress have you been
able to make since then?

TRW’s needs stimulated several sig-
nificant contributions. Its concern
with other software quality fac-
tors besides reliability resulted in a
1973 National Bureau of Standards-
sponsored Characteristics of Soft-
ware Quality study, summarized in
an ICSE 2 paper and a subsequent
1978 book. TRW’s concern with
software cost estimation and avail-
ability of software cost data led to
the development of the Construc-
tive Cost Model (COCOMO) and

the 1981 Software Engineering Eco-
nomics book. Its concern that the
waterfall process model was a poor
fit to increasingly human-interactive
software systems led to the devel-
opment of the 1986 spiral process
model. Its concern with software
risk management led to the publica-
tion of the 1989 Software Risk Man-
agement book.

What came next, in terms of con-
tinuing repercussions of the NATO
conference? What important events
helped establish software engineer-
ing as a discipline and mobilized the
software community?

ICSE 4, in Munich in September
1979, chaired by Friedrich Bauer,
celebrated the 1968 NATO Confer-
ence, also in Germany (Garmisch)
and chaired by Bauer, by having four
seminal invited presentations. They
were about the past, present, desir-
able, and future state of software
engineering. “Past” as in “Software
Engineering in 1968,” delivered by
Brian Randell; “present” as in “Soft-
ware Engineering—as It Is,” which
I delivered; “desirable” as in “My
Hopes of Computing Science,” by
Edsger Dijkstra; and “future” as in
“Look Ahead at Software Engineer-
ing,” by Wlad Turski.

Tell us more. Let’s start with “Soft-
ware Engineering in 1968.”

Brian Randell’s 1968 survey reflected
his thorough approach to computing
history. In terms of the marketplace,
software was becoming a commod-
ity, and some chief information offi-
cers were finding they were spending
about as much on software as they
were on hardware, and they were
getting concerned that the hard-
ware vendors would start charging

INTERVIEW

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 17

separately for their systems software
(unbundling). Some related 1968 de-
velopments were the issuance of the
first patent for software and the re-
sults of the SDC Sackman–Grant
study of the impact of interactive
programming on software produc-
tivity. Interactive programming was
helpful, but its influence was small
compared to the 25:1 difference in in-
dividual programmers’ productivity.

1968 also witnessed Edsger
Dijkstra’s “Go To Statement Con-
sidered Harmful” letter and Larry
Constantine’s definition of modular-
ity, coupling, and cohesion. These
were followed by Dijkstra’s THE
multiprogramming system and in
1969 by his Notes on Structured
Programming, which was to spawn
offshoots such as structured analy-
sis, structured design, structured
testing, etc. Another modular ap-
proach was Frank Zurcher and Brian
Randell’s iterative multilevel mod-
eling. A further 1968 observation
about how many software systems
were really organized was Conway’s
law: The structure of a software
system reflects the structure of the
organization that developed it.

What about you? What did you talk
about? What defined software engi-
neering in 1979, a decade after the
NATO conference?

My challenge was to summarize
how well the software engineering
field was coming along as an engi-
neering discipline. Fortunately, I
had been teaching an MS-level soft-
ware engineering course at the Uni-
versity of Southern California with
about 50 students, and had come
across a paper that summarized 10
key principles learned on develop-
ing several large projects: William
Hosier’s “Pitfalls and Safeguards in

Real-Time Digital Systems with Em-
phasis on Programming.” We can
summarize these principles as test-
able requirements, precise interface
specifications, early planning and
specification, lean staffing in early
phases, core and time budgeting,
careful choice of language, objective
progress monitoring, defensive pro-
gramming, integration planning and
budgeting, and early test planning.

How did these principles manifest
themselves in the students’ projects?

For example, with respect to test-
able requirements, Hosier had
stated, “It is easy to write spec-
ifications in such terms that
conformance is impossible to dem-
onstrate.”5 My students’ experience
confirmed this characterization—
for example, with this anecdote: “A
requirements spec was generated. It
has a number of untestable require-
ments, with phrases like ‘appropri-
ate response’ all too common.”

With respect to precise inter-
face specifications, Hosier had said,
“This is apt to be a monumental
and tedious chore, but every sheet
of accurate interface definition is
quite literally worth more than its
weight in gold.”5 The student’s proj-
ect experience, again, supported
this: “The interface schematics were
changed over the years and not up-
dated, so when we interfaced with
the lines, fuses were burned, lights
went out, ….” We had similar con-
firmations for the other principles.

Hosier’s paper was published in
1961, but its lessons learned were fre-
quently not being practiced 18 years
later. Some reasons for this were in-
cluded in the ICSE 4 paper. First,
the field has been growing rapidly.
Different approaches are appropri-
ate for open-source software, agile

methods, and multiorganization sys-
tems of systems such as supply chain
management and crisis management,
although many of the older principles
still apply. The field is also growing in
the number of people assimilated per
year, leading to the next point, which
is, we haven’t been teaching many
of the lessons learned to students.
A 1979 survey by Richard Thayer
found that 18 of the 20 major software
engineering issues were only lightly
covered in the instructors’ courses.
The main reasons given for the light
coverage were lack of expertise, lack
of texts and other teaching materials,
and inappropriateness for computer
science departments.

The next reason is that we have
our role models mixed up. In one
of TRW’s non-aerospace companies,
the heroes were the indispensable
programmers that carried the designs
around in their heads, but were there
to pull three all-nighters to get the sys-
tem delivered on time. Jerry Weinberg,
a highly humanitarian person, said
in his 1971 book The Psychology of
Computer Programming, “If a pro-
grammer is indispensable, get rid of
him as soon as possible.”6

The fourth reason is that we
often take a restricted view of soft-
ware engineering, which focuses on
how soon the project can get through
with requirements, architecting, and
planning, so that it can get on to the
more familiar job of programming.

Finally, we have been resisting the
required discipline.

To come full circle, could you com-
ment on the third and fourth topics
by Dijkstra and Turski? First, what
was the ideal of software engineering
according to Dijkstra?

Edsger Dijkstra had changed the title
of his contribution from “Software

INTERVIEW

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Engineering as It Should Be” to “My
Hopes for Computing Science.”
This reflects his emphasis on separa-
tion of concerns. His belief was that
computer science was best focused
on making computer programming
into a precise mathematical sci-
ence, and that the software aspects
of other engineering disciplines such
as engineering management, engi-
neering ergonomics, and engineering
economics were best left to others.
Toward the end, he identified two ap-
proaches for addressing the need to
cover both correctness concerns and
efficiency concerns—abstract data
types and program transformation—
and concluded that they are useful
but not complete solutions. A par-
ticular shortfall in their coverage
is that there can be several forms of
efficiency besides computing speed.

Another part of the Dijkstra’s
contribution provides his recommen-
dations on how to proceed in ad-
dressing such challenges:

 1. separation of concerns and effec-
tive use of abstraction;

 2. the design and use of notations,
tailored to one’s manipulative
needs; and

 3. avoiding case analysis—in par-
ticular, combinatorially explod-
ing ones.

A difficulty with step 3 is that there
may be many users with differ-
ent priorities, and as [I mentioned]
above, satisfying them all may be
impossible.

And how did Wlad Turski see things
progressing at the time? How does
that compare to what has transpired
since then?

If Wlad Turski were to come back
today, I think he would be much sur-
prised at how different software en-
gineering is from his predictions in
“Look Ahead at Software Engineer-
ing.” He was right on in predicting
that nearly everyone would be relying
on computers and software. His vision
featured that nearly everyone would
be learning how to program, starting
in primary schools, and graduating

to increasingly powerful program-
ming methods, languages, and tools.
A good part of his paper discusses
the challenges of such powerful
languages: they should be extensible,
modular, adaptable, and scalable,
but also having versions embody-
ing a person’s natural language—
a formidable problem.

As we know now, the evolution of
human–computer interfaces diverged
incredibly from Wlad’s projection
of human–computer inter action as
programming. It was also in 1968
that Doug Engelbart at SRI gave the
“mother of all demos” at the ACM/
IEEE Fall Joint Computer Confer-
ence. It demonstrated almost all of
the fundamental elements of mod-
ern personal computing: windows,
hypertext, graphics, efficient naviga-
tion and command input, videocon-
ferencing, the computer mouse, word
processing, dynamic file linking, re-
vision control, and a collaborative
real-time editor.

A further paradigm shift had
emerged in October 1969 with the
first message sent over the Arpanet
from the University of California,
Los Angeles to SRI, and a working
4-node version of the Arpanet by
December 1969. Further produc-
tization of these capabilities came
with Xerox PARC [Palo Alto Re-
search Center] and their engineer-
ing of the technology into the Alto
workstation, Steve Jobs in making
a reasonably priced version of the
Alto with the Macintosh, and Bill
Gates converting his Microsoft in-
frastructure into Windows. Further
Apple exploitation of microelec-
tronics technology led to the emer-
gence of smartphones, and calling
up your desired services by pok-
ing at something you hold in your
hand, and more recently by speaking
to it: a far cry from Wlad Turski’s

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

HAKAN ERDOGMUS is a teaching professor of electrical and

computer engineering at Carnegie Mellon University’s Silicon Valley

campus. Contact him at hakan.erdogmus@sv.cmu.edu.

NENAD MEDVIDOVIĆ is a professor in the University of Southern

California’s Computer Science Department. Contact him at neno@

usc.edu.

INTERVIEW

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 19

everyone-a-programmer vision in
1969. This is tremendously power-
ful technology that can be used to
empower people or also to empower
governments to control people.

Any final thoughts on what the
future holds?

Sure. For a couple of looks at the
possible future evolution of smart-
phone technology, I’d recommend
for empowering people that you
look at the article, “Estonia, The
Digital Republic,” by Nathan Heller
in the December 18, 2017 issue of
the New Yorker. For empowering
governments, I’d recommend that
you look at the article, “Inside Chi-
na’s Vast New Experiment in Social
Ranking,” by Mara Hvistendahl
in the December 14, 2017 issue of
Wired.

Thank you, Professor Boehm. It has
been very enlightening.

Thanks for the opportunity. If you’re
in the software field, at least you’ll
have some appreciation of the chal-
lenges of living in a world where
autonomous systems are making de-
cisions for you, the platforms you
count on are changing every few sec-
onds, hackers are getting smarter at
taking advantage of you, and contin-
uous learning will be essential. Keep
on learning!

References
 1. B. Boehm, Some Information Pro-

cessing Implications of Air Force

Space Missions: 1970–1980, tech.

report RM-6213-PR, RAND Corp.,

Jan. 1970.

 2. P. Naur and B. Randell, eds., Soft-

ware Engineering: Report on a

Conference Sponsored by the NATO

Science Committee, Garmisch,

Germany, 7th to 11th October 1968,

NATO Scientific Affairs Div., Jan.

1969.

 3. J. Buxton and B. Randell, eds.,

Software Engineering Techniques:

Report on a Conference Sponsored

by the NATO Science Committee,

Rome, Italy, 27th to 31st October

1969, NATO Science Committee,

Apr. 1970.

 4. B. Boehm, “Software and Its Impact:

A Quantitative Assessment,” Data-

mation, May 1973, pp. 46–59.

 5. W. Hosier, “Pitfalls and Safeguards

in Real-Time Digital Systems with

Emphasis on Programming,” IRE

Trans. Eng. Management, vol. EM-8,

no. 2, 1961, pp. 99–115.

 6. G.M. Weinberg, The Psychology of

Computer Programming, Von

Nostrand Reinhold, 1971.

www.computer.org/jobs

Looking for the BEST Tech Job for You?
Come to the Computer Society Jobs Board to meet the best
employers in the industry—Apple, Google, Intel, NSA, Cisco, US Army
Research, Oracle, Juniper...

Take advantage of the special resources for job seekers—job alerts, career
advice, webinars, templates, and resumes viewed by top employers.

