
98	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0740 -7459 / 19©2019 I EEE

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

THIS ISSUE’S “PRACTITIONERS’
Digest” department reports on the
2018 Measurement and Metrics for
Green and Sustainable Software
Systems Workshop (MeGSuS), the
ACM/IEEE 21st International Con-
ference on Model Driven Engineering
Languages and Systems (MODELS),
and the 12th European Conference
on Software Architecture (ECSA).
Feedback or suggestions are wel-
come. In addition, if you try or adopt
any of the practices included in this
article, please send me and the au-
thors of the paper(s) a note about
your experiences.

Using Green Metrics
“Towards Green Metrics Integration
in the MEASURE platform,” by Bag-
nato and Jérôme,2 describes the inclu-
sion of green metrics in the European
MEASURE ITEA3, which uses a
set of industry partners to develop a
metrics framework bottom-up. The
goal of MEASURE is to provide a
systematic reference for companies
to improve their assessment of green

metrics. The MEASURE platform
consists of a web application that al-
lows companies to deploy, configure,
collect, compute, store, combine,
and visualize software measures de-
fined according to the Object Man-
agement Group’s Structured Metrics
Metamodel. Their aim is to reuse
green metrics, drawn from open
source project unit tests, across soft-
ware development projects. Three of
the included metrics focus on energy
consumption: the energy waste rate,
the energy consumption of a soft-
ware artifact, and energy efficiency.
The authors identify three use cases
for the tool suite: 1) monitoring energy
consumption and/or power peaks at
runtime during the software produc-
tion phase, 2) comparing the energy
consumption of similar software
components when evaluating their
energy efficiency, and 3) building a
knowledge base about software en-
ergy consumption to help develop-
ers at earlier phases. In addition,
researchers and practitioners can
use the knowledge base as an input
for building static analysis methods.
The authors are currently soliciting
additional metrics relevant to other

dimensions of sustainability beyond
energy efficiency. This paper appears
in MeGSuS. Access it at http://bit.ly
/PD_2019_May_1.

A Decade of Modeling Trends
“A Decade of Software Design and
Modeling: A Survey to Uncover
Trends of the Practice,” by Badreddin
and colleagues,1 uses the results from
two surveys (given 10 years apart) to
report on the trends in adoption of
software design and modeling in in-
dustry. The survey about modeling
practices included the following top-
ics: types of models and languages
used, the typical modeling activities
used in each software development
phase, and the preferred platforms
and tools. It also gathered respon-
dents’ opinions on the efficacy of mod-
eling, the usability of the tools, and
how model-centric approaches com-
pare with code-centric ones. The re-
sults show a significant increase in the
use of well-defined and formal model-
ing languages, especially in the initial
development phases. Nevertheless,
modeling tools do not seem to live up
to the expectations of these new users
because there is a significant decrease

Measuring Systems
and Architectures:
A Sustainability
Perspective
Jordi Cabot, Rafael Capilla, Carlos Carrillo, Henry Muccini, and Birgit Penzenstadler

Digital Object Identifier 10.1109/MS.2019.2897833
Date of publication: 16 April 2019

PRACTITIONERS’ DIGEST

	 MAY/JUNE 2019 | IEEE SOFTWARE � 99

in participant satisfaction with the
modeling tools. Specifically, the tools
lacked adequate support for commu-
nication and collaboration, were com-
plex, were inadequate for delivering
executable artifacts, and had a high
learning curve. Although the inter-
est in software modeling and design
and the consensus of its benefits is on
the rise, the existing tools seem to be
a major challenge for a more main-
stream adoption. This paper appears
in MODELS. Access it at http://bit
.ly/PD_2019_May_2.

Architecture and
Maintainability
“Abstraction Layered Architecture:
Writing Maintainable Embedded
Code,” by Spray and Sinha,3 describes the
Abstraction Layered Architecture
(ALA), a reference architecture for em-
bedded systems. ALA is built based on
more than two decades of experience
designing embedded software and to
improve long-term maintainability at
Tru-Test, a New Zealand manufactur-
ing company of embedded solutions.
This paper reports on the impact
of ALA on software maintainability
when performing rearchitecting tasks
that demand the addition of fea-
tures. The authors investigated the
role of 11 design principles for writ-
ing maintainable code and analyzed
quality properties from the ISO/IEC
25010 standard. They evaluated ALA
through two tasks on one of Tru-Test’s
products: 1) rearchitecting an embed-
ded device for managing activities on
a dairy farm and 2) adding a new fea-
ture. The evaluation results showed
that the proposed approach produced
more maintainable code. The program-
ming effort for writing the functional-
ity for 12 of the 50 classes took three
months, with an estimate of one man-
year to complete the functionality of
the remainder of the 50 classes. This

effort is much less than what would
be required to develop these classes
using the original conventionally
written code. This paper appears
in ECSA. Access it at http://bit.ly
/PD_2019_May_3.

Continuous Software Engineering
“Enabling Continuous Software Engi-
neering for Embedded Systems Archi-
tectures with Virtual Prototypes,” by
Antonino and colleagues, presents the
II-Model, a continuous software engi-
neering model that combines software
architecture design and virtual proto-
types. Continuous software engineering
incorporates aspects intrinsically re-
lated to business strategy, development,
and operations. Virtual prototypes
correspond to executable architecture
models that enable architecture simula-
tions prior to system development. In
this model, the specification and design

phases run continuously with the inte-
gration and testing phases. Engineers
use virtual prototypes to conduct con-
tinuous and integrated verification of
different system properties at the archi-
tecture level. Companies such as Tesla,
BMW, Jaguar, Land Rover, Brockwell
Technologies, and Diagnostic Grifols
are already using continuous software
engineer ing. The authors envision
a toolchain (potentially built on top of
GitLab and Fraunhofer FERAL) en-
abling the automation of each step of the
continuous-engineering cycle described
in the II-Model.4 This paper appears

in ECSA. Access it at http://bit.ly
/PD_2019_May_4.

Measuring Software
Architecture
“Software Architecture Measurement—
Experiences From a Multinational
Company” by Wu and colleagues5 re-
ports on the results from four years of
creating and evolving an automated
software architecture measurement
system within Huawei. Because Hua-
wei is always seeking to improve prod-
uct quality and provide timely feature
delivery to accommodate changing
markets, it needed to adopt software
architecture measurement practices
based on the ISO/IEC 25010 quality
standard. These practices help 1) sup-
port a quantitative comparison of
projects and monitor architecture
decay over time, 2) visualize architec-
ture debt, and 3) demonstrate quality

and productivity improvements. The
authors used the Standard Architec-
ture Index (SAI) to understand the pri-
orities of Huawei. The SAI contains
measures aimed at architectural issues
related to maintainability, reliability,
security, and performance. The au-
thors used a tool called UADP Arch-
Guarding to support the measures in
a six-product pilot study. The results
showed an increase in product qual-
ity based on SAI 1.0. These products
improved an average of 23.5%. In one
product, they saw a 30% reduction in
subsystem coupling from fixing more

Continuous software engineering
incorporates aspects intrinsically related
to business strategy, development,
and operations.

PRACTITIONERS’ DIGEST

100	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

than 500 smells. In another product,
they reduced coupling by 64% and
reduced maintenance effort by 20%. In
SAI 2.0, the authors included explicit

mapping of architecture smells to
quality attributes and broadened
the scope of the smells. The primary
benefit for software teams was more

fine-grained information to improve
in the architecture. As a result, the
decoupling level metric showed a sig-
nificant improvement in the modular-
ity of the system, and the SAI of the
subsystem improved up to 40%. The
quantification of the architectural debt
was key to conduct refactoring, and
the studies revealed a positive impact
of architecture measurement to en-
sure product quality. This paper ap-
pears in ECSA. Access it at http://bit.ly
/PD_2019_May_5.

References
1.	O. Badreddin, R. Khandoker, A.

Forward, O. Masmali, and T. C. Leth-

bridge, “A decade of software design

and modeling: A survey to uncover

trends of the practice,” in Proc. 21th

ACM/IEEE Int. Conf. Model Driven

Engineering Languages and Systems,

Copenhagen, Denmark, 2018, pp.

245–255.

2.	A. Bagnato and R. Jérôme, “Towards

green metrics integration in the MEA-

SURE platform,” in Proc. 4th Int.

Workshop on Measurement and Met-

rics for Green and Sustainable Software

Systems Collocated with Empirical

Software Engineering Int. Week,

2018, pp. 39–43.

3.	J. Spray and R. Sinha, “Abstraction

layered architecture: Writing maintain-

able embedded code,” in Proc. 12th

European Conf. Software Architecture,

Madrid, Spain, 2018, pp. 131–146.

4.	P. O. Antonino et al., “Enabling

continuous software engineering for

embedded systems architectures with

virtual prototypes,” in Proc. 12th

European Conf. Software Architecture,

Madrid, Spain, 2018, pp. 115–130.

5.	W. Wu et al., “Software architecture

measurement—Experiences from a

multinational company,” in Proc.

12th European Conf. Software Ar-

chitecture, Madrid, Spain, 2018,

pp. 303–319.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JORDI CABOT is an ICREA research professor at the Universitat

Oberta de Catalunya, Spain. He is a Member of the IEEE and ACM.

Contact him at jordi.cabot@icrea.cat.

RAFAEL CAPILLA is an associate professor at the Rey Juan

Carlos University, Spain. He is a Senior Member of the IEEE.

Contact him at rafael.capilla@urjc.es.

CARLOS CARRILLO is an associate professor at the Technical

University of Madrid, Spain. Contact him at carlos.carrillo@upm.es.

HENRY MUCCINI is an associate professor at the University of

L’Aquila, Italy. He is the IEEE Software associate editor in chief and

a Member of the IEEE and ACM Sigsoft. Contact him at henry

.muccini@univaq.it.

BIRGIT PENZENSTADLER is an assistant professor at the Cali-

fornia State University, Long Beach, and an adjunct professor at the

Lappeenranta University of Technology, Finland. She is a Member of

the IEEE and SWE. Contact her at birgit.penzenstadler@csulb.edu.

