
FOCUS: GUEST EDITORS’ INTRODUCTIONFOCUS: GUEST EDITORS’ INTRODUCTION

Twenty Years of Open
Source Software: From
Skepticism to Mainstream
Gregorio Robles, Universidad Rey Juan Carlos

 Igor Steinmacher, Northern Arizona University

 Paul Adams, Wayfair

 Christoph Treude, University of Adelaide

Digital Object Identifier 10.1109/MS.2019.2933672
Date of current version: 22 October 2019

12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 19©2019 I EEE

 NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 13

OPEN SOURCE SOFTWARE (OSS)
has conquered the software world. You
can see it nearly everywhere, from In-
ternet infrastructure to mobile phones
to the desktop. In addition to that,
although many OSS practices were
viewed with skepticism 20 years ago,
several have become mainstream in
software engineering today: from de-
velopment tools such as Git to prac-
tices such as modern code reviews.

In the programmer community,
OSS has become so prevalent that
some companies now expect potential
employees to have an active GitHub
profile that showcases their OSS
contributions. For a phenomenon
with as much impact on software de-
velopment practice as OSS, it is essen-
tial that we understand what works,
what does not, and why. Although re-
searchers and practitioners have stud-
ied OSS for many years, we still do
not have a complete understanding of
OSS as a whole or the many aspects
related to it.

Akin to the famous quote about
Wikipedia: “The problem with Wiki-
pedia (read OSS) is that it only works
in practice. In theory, it can never
work,” we see OSS impacting our
lives every day, yet there is only a very
limited number of theories about
OSS that describe, explain, or pre-
dict how OSS impacts software en-
gineering practice.

The goal of this IEEE Software
theme issue is to share with software
engineering practitioners the reports
that analyze those OSS processes,
practices, and tools that have had a
major influence on software engi-
neering practice.

Topics of recent interest for aca-
demia and practitioners include legal
aspects (the roots of OSS), develop-
ment tools and platforms, program-
ming languages, global software
development, software ecosystems,

social software development, socio-
technical aspects, software analytics,
software heritage, innersource, and
modern code review, among others.

Nonetheless, OSS has spread its
philosophy well beyond software en-
gineering and inspired many other
movements and initiatives, such as
open innovation, open hardware,
open government, open content (e.g.,
Wikipedia and OpenStreetMap), and
open educational resources. Even
the way researchers publish their re-
search has changed, with many at-
tempting to have their publications
available under open access and fol-
lowing open science principles. For
instance, IEEE Software is currently
cataloged as a green open access
journal by SHERPA/RoMEO, a ser-
vice that provides the copyright and
open access self-archiving policies of
academic journals. Green open ac-
cess allows an author to archive a
preprint or postprint version of his or
her paper and make it publicly avail-
able. The archive can be located on
the personal home page of the au-
thor, at an institutional repository of
his or her employer, or at an e-print
server such as arXiv.

Given the importance that OSS
has gained in and beyond software
engineering practices, we argue that
it is important for the software en-
gineering community to benefit from
the insights of having an overview of
the realities, promises, generaliza-
tions, and pitfalls of OSS.

Is Open Source Really
20 Years Old?
The answer is: not exactly. What
has just become 20 years old is the
“Open Source Definition,” the first
version of which was published in
1998 by notable members of the
open source community. The “Open
Source Definition” is a document

that lists 10 conditions software li-
censes must comply with to be con-
sidered open source. This definition
is an adapted version of the Debian
Free Software Guidelines (DFSG)
primarily authored by Bruce Perens,
with feedback from other Debian de-
velopers and released in mid-1997.

The DFSG is a set of guidelines
used by the Debian community to de-
termine what constitutes “free soft-
ware” and to help make decisions
about what software they include in
their distribution. These guidelines
were a more detailed implementation
of the concept of free software that
Richard M. Stallman envisioned with
his four freedoms (initially only three,
but then freedom zero was added), al-
though the authors of DFSG did not
know about the latter (i.e., the four
freedoms) because these had been
published in an early edition of the
GNU’s Bulletin, which was mostly
distributed in paper form on the Mas-
sachusetts Institute of Technology
campus in 1986. It was not, how-
ever, actively promoted on the Free
Software Foundation’s website as an
alternative to the “Open Source Defi-
nition” in the late 1990s.

Stallman claims that, in its early
days, software was de facto open
source (he refers to it as free) but
that the software industry in the late
1970s and 1980s based its business
model on applying copyrights in a
very restrictive way. Although we ac-
knowledge the influence of early pro-
grammers and the ethical side of the
free software movement, the scope
of this issue as well as a major part
of software engineering research, is
the effort of those who promoted the
term open source to be more business
friendly and practical.

OSS is an evolving environment
that has changed considerably in the
last 20 years. Scholars refer to three

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

GREGORIO ROBLES is an associate

professor at the Universidad Rey Juan Car-

los, Madrid, Spain. His research focuses on

free/open source software. Robles received

his Ph.D. in empirical software engineering

research on free/open source software

in 2006. He coauthored the 2002 FLOSS

study while working at the University of

Maastricht, The Netherlands. He was the

general chair of the IEEE International

Conference on Software Maintenance and

Evolution in 2018. He was also the program

cochair of the 2016 and 2017 Open Source

Software Conferences, among others. He

is a Member of the IEEE. Contact him at

grex@gsyc.urjc.es.

PAUL ADAMS is a senior engineering

manager at Wayfair as well as an advisor

to Swarm64 on open source. His focus is

on open source community productivity.

Adams received his Ph.D. in open source

community productivity from the University

of Lincoln, United Kingdom. Contact him at

padams3@wayfair.com.

IGOR STEINMACHER is an assistant

professor in the School of Informat-

ics, Computing, and Cyber Systems at

Northern Arizona University, Flagstaff. His

research interests include human aspects

of software engineering, behavior in open

source software communities, mining

software repositories, and software engi-

neering education training. Steinmacher

received his Ph.D. in computer science

from the University of São Paulo, Brazil.

He served as program cochair of the 12th

International Workshop on Cooperative and

Human Aspects of Software Engineering,

was a guest editor of a special issue on

open source software for Journal of Inter-
net and Software Applications, and he is

currently the program cochair of the 15th

Association for Computing Machinery/

IEEE International Conference on Global

Software Engineering 2020. He is a

Member of the IEEE. Contact him at igor

.steinmacher@nau.edu.

CHRISTOPH TREUDE is a senior

research fellow in the School of Computer

Science at the University of Adelaide,

Australia. The goal of his research is to

advance collaborative software engineer-

ing through empirical studies and the

innovation of processes and tools that

explicitly take the wide variety of artifacts

available in a software repository into

account. Treude received his Ph.D. in

computer science from the University of

Victoria, Canada. He currently serves on

the editorial board of Empirical Software
Engineering and as general cochair of the

IEEE International Conference on Software

Maintenance and Evolution 2020. He is

a Member of the IEEE. Contact him at

 christoph.treude@adelaide.edu.au.

 NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 15

generations of OSS: the first one in
which a community of volunteers led
the development process, a second
one in which the software industry
began to interact with the commu-
nity, and a third one in which in-
dustry consortia push OSS projects
forward with the help of a significant
amount of professional (i.e., paid) de-
velopers. Because these three genera-
tions coexist, community-driven and
highly industrialized projects are led
by a consortium of companies that
are not necessarily the traditional IT
sector. In many sectors, the leading
product is OSS. And if it is not, its
major competing product is.

In This Issue
In “How to Succeed in the Soft-
ware Business While Giving Away
the Source Code,” Brosgol explores
the challenges of allowing users to
access, modify, and redistribute
the source code while protecting a
company’s intellectual property and
sustaining a growing and profitable
revenue stream—using AdaCore’s ex-
perience with the open source licens-
ing for its major product line, the
GNAT Ada development toolset. The
author describes the rationale for
Ada Core’s open source approach,
the relationship between the com-
pany and the open source developer
community, and identifies issues and
how they have been addressed, along
with valuable lessons learned.

In “From Art to Science: The Evo-
lution of Community Development,”
Mueller and Izquierdo-Cortazar em-
phasize the importance of community
development efforts in maintaining
and nurturing the health and well-
being of open source ecosystems. The
article showcases the results of ap-
plying a data-driven network analy-
sis approach to the OpenShift and
Cloud Native Computing Foundation

communities, with a particular focus on
the Kubernetes community. The authors
explore the structure and stability of
networks, identify and promote col-
laborations, and develop strategies to
improve ecosystem health and stability,
with the ultimate goal being to provide a
holistic understanding of the ecosystems
of projects and organizations.

In “Critical Factors for Open
Source Advancement in the U.S. De-
partment of Defense,” Scanlon de-
scribes the critical success factors
needed for successfully leveraging
OSS components in U.S. Department
of Defense software systems. The five
factors that are identified in the article
(i.e., knowing the supporting policies,
making informed selections of open
source components, addressing secu-
rity concerns, leveraging trusted re-
sources, and understanding licensing
issues) are applicable to other fields
and industries where open source use
is still met with skepticism and resis-
tance and can support open source ini-
tiatives in any environment.

Looking Forward
In the current environment, there
is increasing interest in OSS from a
practitioner’s perspective, notice-
able not only by the number of paid
developers but also by the rising
number of previously closed source
projects that have been open sourced.

Recently, the rising importance of
software in modern society has inspired
many industrial sectors to embrace
OSS. Interestingly, companies that have
historically been fierce competitors are
now cooperating to develop software
products for the marketplace. For these
companies, OSS has been instrumental
in making this cooperation possible.
Beyond the production of software,
key concepts of OSS, such as commu-
nity and sharing, are now a relevant as-
pect of their innovation strategy. When

senior management wants to imple-
ment OSS, however, there is still a lack
of formal theories and evidence. OSS
relies too much on stories bordering on
mythical, such as the one of a computer
science student creating an operating
system from scratch with the help of
the Internet and competing against the
biggest software company in the world.

The IEEE Bureau of Labor Statistics
defines software engineering as “the
systematic application of scientific and
technological knowledge, methods,
and experience to the design, imple-
mentation, testing, and documentation
of software.” As in many other areas
of software engineering, with OSS, we
have some partial scientific and tech-
nological knowledge as well as meth-
ods and experience but must further
investigate them to apply OSS system-
atically. It is in this regard that we hope
this special issue has contributed to this
endeavor while helping practitioners
and academics reflect on all of these as-
pects. We look forward to seeing con-
tinued research in this area.

W e sincerely thank the
writers and reviewers of
all of the high-quality

submissions we received for this theme
issue. We also thank Editor in Chief
Ipek Ozkaya and her IEEE Software
crew for its guidance and support.
Happy reading.

Acknowledgments
Gregorio Robles is supported by
the Madrid Regional Government
(e-Madrid-CM—P2018/TCS-4307),
cofinanced by E.U. Structural Funds
(FSE and FEDER), and by the Span-
ish Government (RTI2018-101963-B-
I00). Christoph Treude is supported by
the Australian Research Council’s Dis-
covery Early Career Researcher Award
funding scheme (DE180100153).

