
0740 -7459 / 19©2019 I EEE NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 53

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

DESIGN BY CONTRACT (DBC) is
a technique that improves the qual-
ity of your team’s code. It yields code
with both a logical and a procedural
nature, where the contracts state de-
claratively what will happen, and the
implementations procedurally cause
the desired effect. The team can rea-
son either logically, by using the con-
tracts, or procedurally, by following
the code line by line, but the for-
mer allows them to reason about far
larger programs. It also creates con-
ditions for deliberate practice so de-
velopers using DBC grow their design
skills faster.

Teams that are looking for ways
to improve their code should seri-
ously consider DBC. It is a technique
for designing software in which each
method has a contract, much like a le-
gal document, stating what the caller
is responsible for and what the method
body must do. It was introduced as a
term and adapted to object-oriented
design in the 1980s by Bertrand
Meyer1 and traces its roots to the late
1960s with the work of Robert Floyd,
Tony Hoare, and Edsger Dijkstra
on reasoning logically about proce-
dural programs.

DBC is not a magic elixir that guar-
antees great programs. It’s more like
standard sentence mechanics in an
essay. When sentences are awkward,
it’s hard for a paragraph or essay to
succeed. There are authors who have
written great essays while breaking
grammar and style rules, but they have
done so after they’ve mastered them.
DBC ensures that methods and func-
tions are simple and easy to under-
stand and are therefore great building
blocks for a whole program.

Many teams do code reviews so
that all code changes are reviewed by
a teammate. Before being sent for re-
view, however, the author has already
tested the code and knows it works.
So, code reviews check not whether it
works but if it’s well designed. Clean
code usually has a contractual nature
while spaghetti code does not, even
if its author is not consciously fol-
lowing DBC. Who has not sighed in
frustration when encountering some-
thing like “void process() {/* 1kLOC
elided */}”?

DBC and code reviews are a great
combination. Reviewers may them-
selves write clean code but struggle to
guide others to do the same. They
can say how they would write the
code but not articulate why that is
better. Such advice can devolve into

a battle of opinions. The opportunity
with DBC is that when both the au-
thor and reviewer agree to a goal of
writing code with clear contracts,
they can look out for the DBC prac-
tices being followed (or not) in the
code being reviewed. A reviewer can
point the author to the relevant DBC
practice and, fingers crossed, help the
author improve the design. This ar-
ticle includes a list of DBC practices
that you can add to your code review
style guide.

 Hungry for Contracts
What are contracts exactly? Let’s in-
troduce this concept using an example
that’s familiar to everyone—buying a
sandwich—and apply some practices
to decide on a contract. A sandwich
seller might tell us that buying a sand-
wich can be broken down into a series
of steps: take payment, give change,
collect the ingredients (bread, peanut
butter, and jelly), spread the peanut
butter on one piece of bread using a
knife, spread jelly on the other piece
using a knife, assemble the sandwich,
and deliver the sandwich. Let’s call
those steps the implementation of the
buySandwich method.

DBC asks us to add a contract to
that implementation, for example (given
in U.S. dollar): If I give you $5, you

Better Code Reviews
With Design by Contract
George Fairbanks

Digital Object Identifier 10.1109/MS.2019.2934192
Date of current version: 22 October 2019

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

THE PRAGMATIC DESIGNER

will give me a sandwich. That contract
states the buyer’s responsibility and
what the seller will provide in return.
We can make that a bit clearer by saying
“buyer” and “seller” instead of “me”
and “you.” We can also state what you
probably assumed, i.e., that the seller
takes the money. Here’s an improved
version of that contract: If the buyer
gives the seller $5, the seller will give the
buyer a sandwich and keep the $5.

If you had read that contract as
a code comment above the method
buySandwich, you’d be able to under-
stand that method fairly well without
reading the code body. Notice that the
contract isn’t a translation of the pro-
cedure into natural language. The
contract doesn’t talk about how the
sandwich is made (e.g., using a knife) or
the sequence of its operations. Instead,
it states what happens before and after
the method.

You may have noticed that the con-
tract talks about what happens using

procedural language: The seller gives
the buyer $5. We can change that to de-
clarative language like this: The buyer
has $5. Now that it’s stated declara-
tively, we can use it as the precondition
for the buySandwich method. The post-
condition becomes: The seller has the
buyer’s $5, and the buyer has a sand-
wich. The contract and procedure are
shown in Figure 1.

Perhaps you are thinking that
this is just a mild improvement, as
there could have been a comment
on the buy Sandwich method saying
something similar. Besides, everyone
knows how buying a sandwich works.
What is different is that callers know
what they can depend on. Consider a
few details of the implementation that
do not appear in the contract:

• Making change: The method
body says that the buyer will
get change, but the contract
doesn’t guarantee that. You

have probably seen similar best
efforts, say, from a vending ma-
chine that might not have exact
change or a public bus.

• Assembly with a knife
• Peanut butter before the jelly
• Sandwich type: I’m sure there

are readers who were already
questioning whether peanut
butter and jelly is an acceptable
sandwich at any price.

Without the contract, you could
read the method name and implemen-
tation and then guess at the contract,
but it’s easy to infer the wrong things.
You could convince yourself that any of
these details are something a caller may
depend on. If so, how will we ever fix
bugs or change the implementation to
run faster? Stating the contract removes
the guesswork. As an implementer,
writing a contract leads you to think
about what the caller can rely on and
separate that from how the method is
implemented. As a caller, a contract
tells you what’s safe to depend on.

 Logical Reasoning
Without the contract, you can reason
through a method procedurally, ani-
mating the source code line by line in
your head like a little machine, and
draw conclusions about how it will
behave. When methods have contracts,
you can still use procedural reasoning
if you want to, but you can also apply
logical reasoning.

In this buySandwich example, you
know that, before calling the method,
you are rich and hungry, and afterward,
you are poor and full. That’s consistent
with reasoning procedurally about the
implementation, but it’s different. It lets
you employ formal logic, which is why
contracts are used in automated pro-
gram analysis, such as when your IDE
warns you that a value in your program
might be null.FIGURE 1. An example of contract and implementation.

buySandwich
Precondition: The buyer has $5.

● Take payment.

● Give change.

● Collect the ingredients (bread, peanut butter, and jelly).

● Spread the peanut butter on one piece of bread using a knife.

● Spread jelly on the other piece using a knife.

● Assemble the sandwich.

● Deliver the sandwich.

Postcondition: The seller has $5, and the buyer has a sandwich.

Clean code usually has a contractual
nature while spaghetti code
does not, even if its author is not
consciously following DBC.

THE PRAGMATIC DESIGNER

THE PRAGMATIC DESIGNER

NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 55

Contracts also let humans reason in-
formally with logic, and we do that all
the time. Imagine an implementation
of buySandwich that uses two helper
methods: collectMoney and makeSand-
wich. Does that work? Your logical in-
tuition says yes. But consider different
helper methods blandly named A and
B. Now your intuition is less sure. You
actually don’t have any more informa-
tion about collectMoney than you do
about A, but your mind inferred a logi-
cal contract such as “At the end of the
method collectMoney, the seller has the
$5.” You couldn’t have been reasoning
procedurally through the implementa-
tion because there isn’t one.

We all reason through programs
procedurally, but there’s a size limit,
and it’s not big. Can you keep 10,000
lines in your head and reason about
it? Using procedural reasoning, that’s
shaky, but using logical reasoning it’s
pretty easy. Consider this: I bet you
recall the postcondition for buySand-
wich, but do you recall every step in
the implementation?

To me, the ability to scale our rea-
soning is the great benefit of DBC.
When you structure your program with
clear contracts on methods, you can al-
ways fall back to procedural reasoning,
but you also unlock your ability to rea-
son logically and can keep larger pro-
grams in your head.

 How to Get Started
Every code review starts with the au-
thor thinking that the proposed change
is a good idea, so we should be looking
for ways to guide authors in advance,
not just during the review. Authors can
shoot at a known target as they write
code by using a list of DBC practices
and the overall guiding metaphor of a
contract that is usable by callers.

I was unable to find a checklist
suitable for use in code reviews, so I
created the list shown in Figure 2, and

I think it’s consistent with DBC litera-
ture, such as in Mitchell and McKim.2

You can think of the list as an exten-
sion of the team’s coding style. Like any
style guidance, you should discuss and
tweak it for your project.

I find that once developers start
thinking about DBC, it changes how
they write every method. There are al-
ways choices about how to decompose
a problem, and they will gravitate to-
ward methods where the contract is
easy to state. When introducing DBC
to an existing team or codebase, it’s
better to do it gradually and skip con-
tracts that you think callers can reli-
ably guess. Overall, state contracts as
terse comments that help callers. DBC
is something that you can practice on
your own but it’s even better if the
whole team adopts it.

Low-hanging fruit is the easiest
to pick and coworkers are unlikely
to protest, so I suggest starting with

methods that represent predicates,
such as isActive or hasAddress. Con-
tracts for these methods can be stated
as one-line comments of the form “Re-
turns true iff … ,” where “iff” is short
for “if and only if.” If the codebase
already has methods like these, the
change is just stating the contract, but
if the methods don’t exist, then you also
benefit from making the code read bet-
ter by reducing in-line logic.

Next, turn your attention to query
methods, like getStatus or getAddress.
Because a comment saying “Returns
the status” is unhelpful noise, think
about the corner cases and write a con-
tract if you discover anything interest-
ing, i.e., how it handles null, whether
the method checks for invalid data, or
whether the values are only a subset of
the declared type (especially for prim-
itives such as string or integer). Also
consider whether the accessors should
exist, as they could be coupling the

FIGURE 2. The design-by-contract practices.

• Contracts state what must be true about the inputs.
• Contracts state what will be true about the outputs.
• Contracts use declarative, not procedural, language.
• Contracts omit implementation choices, including sequence.
• Contracts state when a subset of a type is used.
• Contracts state how nulls are handled.
• Contracts state what inputs or states trigger predictable failures.
• Contracts identify any side effects.
• Callers can understand the contract without reading the implementation.
• State ubiquitous conditions as invariants.
• Prefer simple contracts over complex ones.
• Omit contracts only when caller cannot infer the wrong contract.
• Align contracts with the contours of the problem.
• Separate predicates, queries, and commands.

Once developers start thinking
about DBC, it changes how they
write every method.

THE PRAGMATIC DESIGNER

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

caller to the current implementa-
tion unnecessarily.

When you write contracts for com-
mands (i.e., transactional methods that
are impure), look for opportunities
to split the method. Broad methods
such as updateCustomer tend to have
long contracts that cover all of the
corner cases. It can be easier to write
the contract for a narrower method that
does less, and it’s easier for clients to
understand. A set of commands likely
has an obligation to maintain invari-
ants on the data structures it manipu-
lates, so make sure those invariants are
clearly stated.

 Deliberate Practice
As they grow, developers must learn
to detect vagueness, incompleteness,
and clumsiness in their designs. Years
on the job will eventually give them
those skills, but mundane experience
is less effective than deliberate prac-
tice. One nice thing about DBC is that
it can turn routine programming into
deliberate practice. To understand
how, let’s look at deliberate practice in
another field.

William Zinsser, an English compo-
sition teacher, says that in his writing
classes, he would not cross out unclear
or unnecessary parts of students’ sen-
tences but would instead put square
brackets around those parts. Rather
than simply telling the students what
he considered the right answer, his

technique encouraged them to wrestle
with it themselves. His experience was
that, by the end of the semester, they
had learned to write terse prose.3

By encouraging his students to
wrestle with their work, he created the
conditions for deliberate practice. I see
the same thing happening with DBC.
When I’m just grinding out code, I’m
not deliberately practicing. But when I
force myself to state the contracts for
each method, I notice when an idea is
fuzzy, when the contract is rambling,
or when my code makes unstated as-
sumptions about a data structure.

The act of stating contracts creates
the conditions for deliberate practice.
It makes the unstated visible, like the
square brackets that direct attention
in an essay. The contracts let me see
my code from a different perspective,
revealing design flaws, and nudging
me toward clearer designs. If DBC is
able to accelerate the careers of devel-
opers by helping them learn to detect
vagueness, incompleteness, and clum-
siness in their designs, it is worth try-
ing for that reason alone.

D BC is a technique taught to
computer science undergradu-
ates at many universities, in-

cluding the Massachusetts Institute of
Technology in 6.031 and Carnegie Mel-
lon University in 17-241. It encourages de-
signs where you know what must be true

when a method completes, rather than
designs where a method does a bunch of
stuff and you squint to infer what exactly
it means.

If you are a technical lead or man-
ager who wants to improve your sys-
tem’s code, you could just wait several
years until the team has more expe-
rience. If you want to do something
today, however, there are only a few
techniques that are easy to teach and
offer the benefits that DBC does. DBC
helps if just one person on the team
applies it, and it helps more with each
additional person.

There are other ways to arrive at
elegant designs, but DBC is a partic-
ularly good fit for code reviews be-
cause a reviewer can point the author
to a practice that the code does not
yet follow. What’s more, DBC leads
the team to think about the abstrac-
tions that the contracts refer to, so
it’s a gateway to other helpful tech-
niques like precise modeling.

Having contracts on methods is
like having an owner’s manual in
your car’s glove box. The most loved
owner’s manuals are the ones that
are never opened because the design
is simple and obvious. Everyone wants
software that is simple and probable, but
wishing does not make it so. DBC pro-
vides an early warning about awkward
designs, shows where complexity still
lives, and often leads to methods that
callers understand without reading the
contract.

 References
1. B. Meyer, Object-Oriented Soft-

ware Construction. Reading, MA:

 Addison-Wesley, 1994.

2. R. Mitchell and J. McKim, Design

by Contract, by Example. Reading,

 MA: Addison-Wesley, 2001.

3. W. Zinsser, On Writing Well: The

Classic Guide to Writing Nonfiction.

New York: Harper Perennial, 2016.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google.

Contact him at gf@georgefairbanks.com.

