
92 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

IN THE PAST decade, we have seen
a significant shift in attitudes toward
the architect’s role. Many organi-
zations now prefer to allocate the
responsibility for major design deci-
sions not to an architect but to teams
without a named architect. Sometimes
the roles on such teams are identified
by such terms as pathfinder, mas-
ter builder, ninja developer, or stew-
ard. Some of these roles appear to be
merely euphemisms to avoid the (in
some circles, dreaded) A-word, but
others represent a genuinely differ-
ent way of looking at architectural
responsibilities. In this article, I will
share some insights about this shift.
These have been gained by a small
group of instructors teaching more
than 1,400 architects in dozens of or-
ganizations across the globe.

Research1 shows that applying
architecture practices improves the

quality of software and the ability to
control the risk and cost of deliver-
ing it. If organizations want to reap
those benefits without a named ar-
chitect, they need a way to think
about the maturity of the architec-
ture function on an organizational
level. We deconstructed the role of
the architect into a set of responsi-
bilities, and then we reconstructed
those into a model that helps or-
ganizations assess how well they
are crafting architecture and where
they can improve—with or with-
out named architects. We fine-tuned
this maturity model by applying it
in practice for a year. The result pre-
sented here might help you recognize
the weak spots on your team and
find ways to improve.

The model consists of two things:
a set of five responsibilities that make
up the architecture function (Figure 1)
and a way to assess how well orga-
nizations fulfill each of them. I will
briefly discuss both.

Five Architecture
Responsibilities
The perception of architecture
in the field of software engineer-
ing has gone through a number of
changes since it was first used in
that context. Here’s a rough sketch
of how five distinct architecture
responsibilities emerged over the
years. In the 1990s, architecture
was viewed2 as a set of structures
(components and connectors) that
represents an abstraction of a sys-
tem being delivered—an abstraction
needed to deal with the growing
complexity of typical software sys-
tems. The main architectural activi-
ties were3

• architectural analysis, with the
aim of understanding context

• architectural synthesis, resulting
in architecture models

• architectural evaluation,
aimed at validating the
architecture.

Between the Waterfall
Wasteland and the
Agile Outback
Eltjo Poort

Digital Object Identifier 10.1109/MS.2019.2945611
Date of current version: 24 December 2019

From the Editor

Agilists and architects too often talk past each other. In this issue’s “The Pragmatic

Designer,” guest columnist Eltjo Poort helps to bridge the divide by identifying five

architecture responsibilities. This enables teams to introspect about how well they

are handling each, and encourages them to avoid the extremes. —George Fairbanks

THE PRAGMATIC DESIGNER

 JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 93

In the early 2000s, a second per-
ception emerged, with a focus on a
new responsibility: architects needed
to make important decisions4 to cre-
ate the right models of their solu-
tions (right meaning that they fulfill
their stakeholders’ needs). If abstrac-
tion and structures describe what the
architect creates, the decision making
refers to how they create it.

Around 2010, partly under pres-
sure of the agile movement’s focus
on business value, a third perception
emerged: the why was added to the
what and the how of architecture.
This view shed light on the business
goal of architecture: to improve or-
ganizations’ control over risk and
cost5—not only during design, but
extending the architects’ responsibil-
ity to the delivery domain.

So, we end up with five architec-
tural responsibilities: understanding
context, making decisions, mod-
eling, validating, and delivery. Be-
tween these five responsibilities are
many dependencies. Here are just
a few:

• Modeling and decision making
without understanding context
will lead to wrong models and
decisions.

• Modeling actually implies deci-
sion making (about decomposi-
tions, relationships, and so on).

• If there are no models and
no decisions, there is nothing
to validate.

• Delivery of unvalidated decisions
and models may lead to trouble.

So, fulfilling the five responsibilities in
isolation is not enough: they should
be fulfilled in a coherent way.

Balanced Architecture
There’s no such thing as good archi-
tecture in an absolute sense: the best

one can hope for is an architecture
that fits the stakeholder needs in its
context. The best-fitting architectures
result from paying proper attention
to all five responsibilities mentioned.
This is not easy; due to such factors
as cultural pressures, dogmas, and
misconceptions, many organizations
ignore some of the responsibilities,

resulting in a flawed architecture
function. Two extreme examples are
the Waterfall Wasteland and the
Agile Outback caricatures described
later in this article.

Paying proper attention to all five
responsibilities, however, does not
mean always giving equal attention to
each one: depending on the context,

FIGURE 2. The flaws of the Waterfall Wasteland.

Understanding
Context

Making
Decisions

DeliveryValidating

Modeling

“We don’t make
decisions; we only
advise management.”

“Our design was
perfect, but the
builders were
incompetent.”

Understanding
Context

Making
Decisions

DeliveryValidating

Modeling

FIGURE 1. The five responsibilities of the architecture function.

THE PRAGMATIC DESIGNER

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

modeling may indeed require more
attention than decision making, and
validation may be more critical in some
situations than in others.

When talking to teams, architects,
and stakeholders in different orga-
nizations, we started to notice some
interesting patterns in the way they
took up these responsibilities. We cre-
ated caricatures to highlight the dif-
ferences between those patterns and
called them the Waterfall Wasteland
and the Agile Outback. Note that
these are caricatures; they do not ex-
ist in real life. They have exaggerated
features, may be amusing to some and
offensive to others, but can be useful
in making a point.

Caricature One: The Waterfall
Wasteland
In the Waterfall Wasteland, the ar-
chitects are sometimes said to live in an
ivory tower. They ignore the decision-
making and delivery responsibilities,
which they consider to be someone
else’s. They have a very clear job de-

scription: to create perfect models and
validate them against stakeholder needs.
If the resulting solution is unsuccessful,
it’s obviously not their fault. The idea
that they would be responsible for de-
cisions or share responsibility for suc-
cessful delivery is abhorrent to them:
it would mean that their success would
depend on the capability of others.

Organizations in the Waterfall Waste-
land typically have trouble adapting to
change: the carefully modeled and vali-
dated designs have a limited shelf life and
are hard to adapt to new insights gained
during delivery. There is a long feedback
cycle between architecture and delivery.
The (often hefty) architecture documents
go out of sync with reality and become
ballast and waste (Figure 2).

Caricature Two: The Agile Outback
In the Agile Outback, teams usually
don’t have architects. Modeling is
avoided since, according to the Ag-
ile Manifesto (http://agilemanifesto
.org), “The best architectures…
emerge from self-organizing teams.”

This could be (mis)interpreted to
mean that modeling is unnecessary
or even counterproductive. Teams
in the Agile Outback rarely use
models to think about or validate
designs. Instead, they rely on quick
feedback from failures.

Organizations in the Agile Outback
produce a lot of direct business value
at high velocity in the beginning of a
product’s lifecycle. However, in our
experience, such organizations tend to
have problems sustaining that veloc-
ity. They often have to revisit decisions
and redo work that could have been
avoided with a little more forethought.
Some architectural decisions are not
easy to refactor, and a few hours gen-
erating and evaluating alternatives
would have been well spent (Figure 3).

Assessing Agile Architecture
Maturity
How can organizations avoid get-
ting stranded in the Agile Outback
or the Waterfall Wasteland? How
can teams find the right balance and
reach the Goldilocks Zone with just
enough up front and sufficient adap-
tive architecture?

As part of our risk- and cost-
driven architecture approach, we de-
veloped a maturity model based on
behavior that we observed in teams—
behavior that we found to be a good
indicator of how well teams are ful-
filling each of the five responsibilities
of the architecture function, both in-
dividually and collectively. A unique
feature of this model is that it allows
organizations to identify strengths
and weaknesses in their architecture
function, without requiring specific
roles. Teams can be mature in terms
of agile architecture without a named
architect or an architecture docu-
ment—and the model will show that.

Figure 4 shows a form that we
have been using to assess teams’ agile FIGURE 3. The flaws of the Agile Outback.

Understanding
Context

Making
Decisions

DeliveryValidating

Modeling
“The best

architectures
emerge.”

“Fail early and
fail often.”

THE PRAGMATIC DESIGNER

 JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 95

Table 1. Behavior indicative of maturity.

Behavior Description

Understanding context

 Effective stakeholder communication Business, delivery, and operational stakeholders are actively involved in architectural design. They
are easily accessible to explain context, and they frequently help identify key concerns and risks. They
are not just asked for approval: there is a continuous feedback cycle in business language between
business concerns and architectural design.

 Context knowledge managed Knowledge about architectural context is gathered, validated, and preserved. Specific architectural
drivers and the (business) goals behind them are documented and validated.

Making decisions

 Decisions as primary deliverable Architectural decisions are communicated individually and not only as part of a design document.
Stakeholder feedback is gathered on individual decisions.

 Prioritized by business impact Those concerns and decisions that have the highest risk and cost impact on their collective
stakeholders are considered first and receive the most attention. This contrasts with setting priorities
by checklist, template, or the next deadline.

 Justified and documented Architectural decisions, including the criteria on which they are based and their relation to specific
business goals and consequences, are visible to stakeholders. Stakeholders can see which alternatives
were rejected and why.

 Well-timed decisions The timing of each architectural decision is a conscious tradeoff between the cost of delaying the
decision and the risk of making a wrong decision. This contrasts with making all decisions collectively
by management approval of a document or with timing dictated by the next most urgent thing.

 Decentral unless… Architectural decisions are consciously made at the optimal level of decentralization: in
decentralized teams, if the benefits of local optimization outweigh the risk and costs of diversity and
nonstandardization, or at the central level, if team interests can be conflicting or would cause too
much complexity. Responsibility for architectural decisions is shared between those owning the wider
context and those owning specific solutions.

Modeling

 Visual model of context Information-system context is documented and validated (context diagram), showing solution boundary
and external dependencies.

 Visual models of solution Appropriate visual models of solutions are created. They show how the architecture addresses relevant
stakeholder concerns and are used as the basis for validating, creating, and delivering solutions. The
models are curated and maintained throughout the solution’s lifespan.

Validation

 Fulfills stakeholder needs? Architectural designs are validated before implementation by checking that the architecture can
support the most risky and costly anticipated requirements. The thoroughness of this validation (from
a 1-h whiteboard session to a multisprint architectural prototype) is a conscious tradeoff taking into
account business criticality, size, complexity, and volatility.

Delivery

 Architectural runway recognized The product backlog or project plan contains user features/epics/stories as well as items to realize
architectural elements and technical debt reductions (“enablers”). The backlog is fed by a variety of
sources, including those representing higher-level architectural concerns.

 Architecture debt control Technology upgrades and work to fix architectural shortcuts are visible on the product backlog or
project schedule. Decisions to fix debt are based on economic tradeoffs (as opposed to “only if there’s
time left after the rest is done”).

 Just enough anticipation Business, delivery, and operational stakeholders help identify future events that impact risk, cost, and
value of solutions, so that teams are not taken by surprise. Dependency analysis is used to start work
on architecture runway and technical debt remediation in time.

THE PRAGMATIC DESIGNER

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

architecture maturity. It shows the be-
havior indicative of each responsibil-
ity’s maturity level and a graphical
representation of the resulting matu-
rity profile. Table 1 gives a brief de-
scription of each type of behavior.
The scoring mechanism is quite sim-
ple: participants make an assessment
of the frequency of the behavior on a
scale of 1 (never) to 5 (habit). A qual-
ity multiplier between 0% (useless)
and 100% (perfect) is used to adjust
scores downwards in situations where
the frequency of the behavior could
give a misleading perception (“We are
in the habit of doing this very badly.”).

Experiences
So far, we have used this model and
its predecessors to assess nine teams
in three organizations in the transport

and financial sectors. In these assess-
ments, we conducted 45 interviews
overall with architects, team mem-
bers, and business stakeholders to
score the behavior. We used the five
responsibilities and associated be-
haviors as a tool kit to help assessors
focus their questions. The assessors
were experienced senior architects.
They produced expert maturi ty
assessments underpinned by ob-
servation. The feedback we received
indicates that the model is useful in
highlighting where organizations can
improve and develop a more balanced
way of dealing with architecture. The
Waterfall Wasteland and Agile Out-
back caricatures were found to be
both amusing and helpful, especially
in two situations: for recognizing the
importance of modeling in contexts

with high business criticality and
complexity and for highlighting the
importance of adaptive design and
short architectural feedback loops in
volatile environments.

W e are now working on
our next step, which is
to evolve the model from

a tool kit for experts to a more objec-
tive measurement instrument. One of
the approaches we are investigating is
to ask teams to assess themselves af-
ter explaining the model and show-
ing examples and counterexamples
of each type of behavior. We tried
this out on workshop attendees, who
indicated that it was a useful ex-
ercise. An encouraging result was
that members of the same team

FIGURE 4. The concept of agile architecture maturity radar.

Agile Architecture Maturity Radar

Effective Stakeholder
Communication

Visual Model of
Context
Visual Models of
Solution

Fulfills Stakeholder
Needs?

Context Knowledge
Managed

4

2

3

3

3

4

5 5

Understanding Context

Modeling

5

4

3

2

1

0

Validation Delivery

Making Decisions

Prioritized by Business Impact

Decisions as Primary Deliverable

Justified and Documented

Well-Timed Decisions

Decentral Unless...

2

2

3

2

2

2

2

3

4

4

Architectural Runway
Recognized

Architecture Debt Control

Just Enough Anticipation

1 Never 2 Seldom 3 Ad Hoc/Individuals 4 Mostly 5 Habit 0–100% Quality Multiplier

THE PRAGMATIC DESIGNER

JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 97

tended to have very comparable self-
assessment scores. So far, this is
just anecdotal, and we are work-
ing on gathering more evidence. If
you are interested in participating,
want to share feedback, or try this
at home, contact me.

 References
1. R. Slot, “A method for valuing archi-

tecture-based business transformation

and measuring the value of solutions

architecture,” Ph.D. thesis , Faculty

of Economics and Business, Univ. of

Amsterdam, The Netherlands, 2010.

2. M. Shaw and D. Garlan, Software

Architecture: Perspectives on an

Emerging Discipline. London: Pear-

son, 1996.

3. C. Hofmeister, P. Kruchten, R.

Nord, and H. Obbink, “General-

izing a model of software archi-

tecture design from five industrial

approaches,” in Proc. 5th Working

IEEE/IFIP Conf. Software Architec-

ture (WICA’05), 2005, pp. 77–88.

4. J. Tyree and A. Akerman, “Architec-

ture decisions: Demystifying archi-

tecture,” IEEE Softw., vol. 22, no. 2,

pp. 19–27, 2005.

5. E. R. Poort and H. van Vliet, “RCDA:

Architecting as a risk- and cost man-

agement discipline,” J. Syst. Softw.,

vol. 85, no. 9, pp. 1995–2013, 2012.

ABOUT THE AUTHOR

ELTJO POORT leads the architecture practice at CGI in The Netherlands.

Contact him at eltjo.poort@cgi.com.

IEEE Computer Society
Has You Covered!
WORLD-CLASS CONFERENCES —
200+ globally recognized conferences.

DIGITAL LIBRARY — Over 700k articles covering
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions
in the IEEE Computer Society Jobs Board.

NETWORK — Make connections in local Region,
Section, and Chapter activities.

Explore all of the member benefi ts
at www.computer.org today!

Digital Object Identifier 10.1109/MS.2019.2955590

