
0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 3

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute,
ipek.ozkaya@computer.org

A SOFTWARE ENGINEER applies
the principles of engineering to the
design, development, maintenance,
testing, and evaluation of a software-
enabled system. While this fundamen-
tal understanding of what a software
engineer does is commonly shared,
the journey to understand what a soft-
ware engineer should know evolves,
mostly as a consequence of the rapid
pace of technological changes.

Similar to all other engineering
disciplines, the societal implications
of software-enabled systems influ-
ence the software-engineering body
of knowledge. One way we observe
this influence is through the incredi-
ble pace at which advances in artificial
intelligence (AI) and, in particular,
machine learning (ML) are impacting
software-enabled systems.

Should we be teaching budding
software engineers skills that we are
not already providing to ensure that
they become competent in the brave
new world of developing socially re-
sponsible software systems that are
increasingly likely to include AI/ML
components?

Fundamental Knowledge
Areas
The Guide to the Software Engineer-
ing Body of Knowledge (SWEBOK)
describes 15 areas that are fundamen-
tal to the profession.1 The knowl-
edge areas should not surprise any
practicing software engineer. They
span software requirements, design,
construction, testing, maintenance,
configuration management, software-
engineering management, software-
engineering processes, models and
methods (including formal and agile
methods), software quality, profes-
sional practices, software-engineering
economics, computing foundations,
mathematical foundations, and engi-
neering foundations.

There are natural overlaps between
these areas; however, collectively they
provide a reasonable coverage of the
knowledge and skills that a software
engineer should develop during the
course of her career. On one hand the
SWEBOK knowledge areas cover
the essential competencies in software
engineering. On the other hand, soft-
ware-enabled systems are increas-
ingly ubiquitous, developed and
sustained by interdisciplinary teams,
and integrated into all aspects of so-

ciety. Consequently, it is important
to consider emerging areas of knowl-
edge that are likely to be increasingly
critical for software engineers. I ar-
gue that, given the pervasive nature of
software in society and the promise of
AI, software engineers, at a minimum,
should have an understanding of
three additional areas: data science,
computing hardware, and socially
responsible engineering.

Data Science
Data science combines theories and
techniques from mathematics, sta-
tistics, computer science, and infor-
mation science to understand and
analyze the phenomenon about data.
For example, extracting knowledge
and insight from patterns in informa-
tion is the fundamental aspect of ML
in data science.

Software engineers need to under-
stand the basics of data science for
several reasons. Increasingly, software-
enabled systems include ML models
and data. Developing software systems
with these elements presents different
software-engineering challenges. For
instance, data and ML models erode
at different rates than other software
components. This requires software

What Should a Software
Engineer Know?
Ipek Ozkaya

Digital Object Identifier 10.1109/MS.2019.2946668
Date of current version: 24 December 2019

FROM THE EDITOR

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

engineers to design systems that create
data-agnostic pipelines to enable data
and model changes to be incorporated
with ease. In addition, software engi-
neers need to understand how to ver-
ify and validate such systems as well
as how to continuously test for them.
Understanding data-science methods
provides opportunities for software
engineers to question the verification
and validation of the outcomes ap-
propriately and raise flags when un-
certainty is high. Software engineering
for ML systems needs to incorporate
the discovery, management, version-
ing, and overall handling of data;
model customization and reuse; and
incorporation of general data-inten-
sive AI components, all of which are
new skill sets.2

The ability to engineer systems
that address these challenges requires
software engineers to have an under-
standing of how data may evolve. In
addition, interacting with the tools
and techniques that data scientists use
becomes part of the responsibilities of
software engineers. Increasingly, soft-
ware-engineering teams integrate data
scientists. A study done with Microsoft
engineers observed two leading kinds
of data scientists. Polymaths conduct
all of the necessary work related to
preparing and analyzing data, includ-
ing some software-engineering tasks,
but come from a data-science back-
ground. Conversely, moonlighters are
software engineers, but to address an
immediate need in the team, they of-
ten perform data-scientist tasks.3 The
blurring of the boundaries between
roles and responsibilities is likely to in-
crease, further necessitating software
engineers to possess some of the fun-
damental data-science knowledge.

Computing Hardware
Not all software applications are
computationally demanding. How-

ever, increasing demands for security,
energy efficiency, high performance,
and multimodal data processing in-
cluding images, video, and acoustics,
necessitate focusing on hardware that
the software runs on more carefully.
Developing software on field-program-
mable gate arrays (FPGAs), multicore
processors, and graphics-processing
units requires unique software-engi-
neering approaches for parallelizing
algorithms and computation. And,
of course, with the much-anticipated
possibility of making quantum com-
puting a reality sooner than later, the
question we should ask is: how might
the way we develop software for these
different hardware platforms change?

Software engineers need to under-
stand the benefits and shortcomings
of the hardware for which software
is developed, to better take advan-
tage of its capabilities. For example,
the research and practitioner com-
munities are increasingly focused
on the implications of developing
energy-aware software and how it
operates.4 The way software runs is
directly related to how aware engi-
neers are of the hardware platforms
it will run on, how they optimize the
development of the software for those
platforms, and how efficient the com-
putation can be.

Energy-aware software is only
one of the emerging scenarios that
necessitate software engineers’ un-
derstanding of computing hardware.
There are many other examples; for
instance, the benefit of FPGAs is
their user-reprogrammable hardware
blocks that interconnect to enable
application customization. The abil-
ity to change the internal operation
of the hardware to accommodate
changes to a design provides flexibil-
ity, making FPGAs suitable for appli-
cations in which low latency and high
processing power are desired, such as

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

help@computer.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FROM THE EDITOR

 JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 5

cybersecurity, autonomous systems,
and wireless communications.

Socially Responsible
Engineering
The term socially responsible engineer-
ing means placing the public safety
and interest ahead of all other con-
siderations. As an engineering dis-
cipline, software engineering can
borrow from the thinking that has
been done to advance socially respon-
sible engineering in other disciplines.
Engineering ethics, for example, is
treated under three distinct catego-
ries: individual, professional, and so-
cial.5 The individual and professional
responsibilities of software engineers
are articulated through an existing
code of ethics and under the soft-
ware-engineering professional-practice
knowledge area of SWEBOK. How-
ever, we have a long way to go in bet-
ter incorporating socially responsible
engineering know-how into software
engineering. The many recent incidents
of failure—the Boeing 737 crashes6

and Equifax data breach,7 to name
two high-profile ones—should be
wake-up calls that we need to treat
the social responsibilities of software
engineers as top priority.

Teaching social responsibility re-
quires teaching software engineers to
account for the impact of their work
on society. Software engineers should
know how to discover all of the rele-
vant facts concerning design, develop-
ment, and deployment of their systems
and how the possible outcomes of
their available choices may positively
or negatively affect/impact society.
Thinking about software engineer-
ing outside the boundaries of social
responsibility simply is not an option
anymore. Luckily, we do not have to
start from scratch and can build on
decades of thinking about the societal
impact of science and engineering.

Software engineers work in inter-
disciplinary teams that include data
scientists, hardware engineers, and do-
main and other experts as the problem
at hand necessitates. There is a fine

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@
ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@
computer.org
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
Senior Advertising Coordinator: Debbie Sims
IEEE Computer Society Executive Director:
Melissa Russell

CS PUBLICATIONS BOARD
Fabrizio Lombardi (VP for Publications),
Alfredo Benso, Cristiana Bolchini,
Javier Bruguera, Carl K. Chang, Fred Douglis,
Sumi Helal, Shi-Min Hu, Sy-Yen Kuo,
Avi Mendelson, Stefano Zanero, Daniel Zeng

CS MAGAZINE OPERATIONS
COMMITTEE
Sumi Helal (Chair), Lorena Barba, Irena Bojanova,
Shu-Ching Chen, Gerardo Con Diaz,
Lizy K. John, Marc Langheinrich,
Torsten Möller, David Nicol, Ipek Ozkaya,
George Pallis, VS Subrahmanian, Jeffrey Voas

IEEE PUBLICATIONS
OPERATIONS
Senior Director, Publishing Operations:
Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion
and Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2019.2946667

LOOKING AHEAD

For 2020, we have an exciting lineup of theme issues. In this issue, guest
edited by Rick Kazman and Liliana Pasquale, we focus on software engineering
in society. We also introduce a new column, “SE for AI,” edited by Tim Menzies.
Software systems are increasingly key AI-enabled systems, such as autono-
mous vehicles, or have significant AI components, including web search,
recommendation systems, and home appliances. AI is built with software.
Engineering AI-enabled systems presents different challenges that cannot be
studied in isolation from software engineering. The goal of this column is to pre-
cisely focus on this relationship.

Our March/April 2020 issue will focus on design thinking, followed by the
August/September 2020 issue that will be dedicated to the AI effect: working
at the intersection of AI and sof tware engineering. We will end the year
by looking closer into blockchains, smar t-contract engineering, and the
psychology of software engineering. Details about the calls for papers
for these theme issues can be found by visiting our website, https://
www.computer.org/publications/author-resources/calls-for-papers, and
selecting IEEE Software.

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FROM THE EDITOR

line that any professional walks be-
tween specializing her knowledge ver-
sus becoming a generalist. However,
given the pervasive nature of data, ad-
vances in hardware, and the impact of
software in society, we need to treat
data science, computing hardware,
and socially responsible engineering
as key knowledge areas for software
engineers and not bury them beneath
other areas of expertise.

References
1. IEEE Computer Society, “Guide to

the software engineering body of

knowledge.” Accessed on: Nov. 2019.

[Online]. Available: https://www

.computer.org/education/

bodies-of-knowledge/software

-engineering

2. S. Amershi et al., “Software engi-

neering for machine learning: A

case study,” in Proc. 41st Int. Conf.

Software Engineering: Software

Engineering in Practice (ICSE SEIP),

2019, pp. 291–300.

3. M. Kim, T. Zimmermann, R. De-

Line, and A. Begel, “Data scientists

in software teams: State of the art

and challenges,” IEEE Trans. Softw.

Eng., vol. 44, no. 11, pp. 1024–1038,

2018.

4. A. Fonseca, R. Kazman, and P. Lago,

“A manifesto for energy-aware soft-

ware,” IEEE Softw., vol. 36,

no. 6, pp. 79–82, 2019.

5. J. R. Herkert, “Ways of thinking

about and teaching ethical problem

solving: Microethics and macroethics

in engineering,” Sci. Eng. Ethics,

vol. 11, no. 3, pp. 373–385, 2005.

6. L. Hatton and A.-F. Rutkowski,

“‘Lessons must be learned’–But are

they?” IEEE Softw., vol. 36, no. 4,

pp. 91–95, 2019.

7. U.S. House of Representatives Com-

mittee on Oversight and Government

Reform. 115th Congress. (Dec.

2018). The Equifax Data Breach.

Accessed on: Nov. 2019. [Online].

Available: https://republicans

-oversight.house.gov/wp-content/

uploads/2018/12/Equifax

-Report.pdf

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MS.2019.2959927

