
0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 87

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

Emerging Trends,
Challenges, and
Experiences in DevOps
and Microservice APIs
Uwe Zdun, Erik Wittern, and Philipp Leitner

Digital Object Identifier 10.1109/MS.2019.2947982
Date of current version: 24 December 2019

From the Editors

The Vienna Software Seminar (VSS) has established itself as a place to be for

those operating at the intersection between software research and practice: here,

staff members from Internet firms, software vendors, and consultancies exchange

thoughts and experiences with academics across the whole software engineering

lifecycle. In this issue’s “Insights” department, the VSS 2019 organizers report on

program highlights and share findings from open space discussions.

 —Cesare Pautasso and Olaf Zimmermann

IN AUGUST 2019, we organized the
second Vienna Software Seminar (VSS)
with the topic “DevOps and Microser-
vice APIs.”1 Embracing the positive
reception of its first iteration in 2017,2

VSS is an opportunity for attendees
to discuss recent software technolo-
gies, practices, and related research.
The seminar’s 34 participants included
a mix of practitioners and academ-
ics, who were invited based on their
roles and experiences. The explicit in-
tention of the seminar was to provide
ample opportunities for exchange and

communication: six themed sessions
consisted of one invited keynote and
two lightning talks, giving different
perspectives on the session’s topic and
(ideally) sparking ideas for follow-up
discussions. After the talks, all partici-
pants decided on subtopics for two to
three breakout sessions (i.e., informal,
self-organized discussions among in-
terested participants). Breakout session
topics included microservice security,
tooling for application programming
interface (API) evolution, serverless
programming models, and identifica-
tion of microservices using domain-
driven design. The sessions provided
opportunities for detailed discussions

and identifying challenges to address
in future collaborations. Toward the
end of each session, all participants
gathered once more to summarize the
breakout discussions. Additional op-
portunities for communication were
provided during shared lunch breaks
and social events in the evenings.

Focal topics that emerged in this
year’s iteration of the seminar were
how to identify, design, and evolve
(micro)services; how to manage ser-
vice APIs and API ecosystems; how
to implement services (for instance,
using novel techniques, such as server-
less); and how to operate services
in a DevOps style. In this article,

INSIGHTS

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

we report on emerging trends, chal-
lenges, and experiences in DevOps
and microservice APIs as they were
identified and discussed during the
seminar. A graphical overview is pro-
vided in Figure 1.

Service Identification
and Design
A question that many seminar partic-
ipants identified as crucial is how to
identify constituent services and APIs
in a microservice-based application.
Conventional wisdom indicates that a
good practice is to start with a mono-
lith, and when an actual need arises,
start cutting out individual services
from this monolith.3 However, a
monolith that has grown naturally
(i.e., without explicit planning for fu-
ture microservice migration) may of-
ten require substantial architectural

redesign before nontrivial services
can be cut out. Consequently, some
participants reported on experiences
with a structured monolith approach:
building a monolithic application
in a way to explicitly ease later mi-
croservice migration. Unfortunately,
experience has shown that such a
structured monolithic approach re-
quires considerable upfront architec-
tural investment at a time when it is
still unclear if this investment will
ever pay off. For example, foresee-
ing implications on reliability, perfor-
mance, or security once components
start communicating over a network
is hard and will eventually still re-
quire significant refactoring. Hence,
it remains challenging for practitio-
ners to actually design a system with
(potential) future microservice migra-
tion in mind.

As for how to actually design ser-
vices, the domain-driven design (DDD)
approach received a lot of attention
during the seminar. Context Map-
per4 and MDSL5 were demonstrated
as prototypical domain-specific lan-
guages (DSLs) for modeling bounded
contexts, services, and APIs. The
two intertwined DSLs support code
generation of service stubs after the
domain has been modeled success-
fully. Service decomposition criteria
were discussed as well; in addition to
well-known software qualities, for ex-
ample, consistency, availability, and
recoverability, and design principles,
including high cohesion within and
low coupling between services, eco-
nomic forces such as costs were iden-
tified as key decision drivers during
service decomposition. Both develop-
ment efforts and operational expenses

FIGURE 1. The emerging challenges of microservice API development and operations. REST: Representational State Transfer; DDD:

domain-driven design; FaaS: function-as-a-service.

Service Identification and Design
– “Structured Monolith” Requires High Up-Front
 Investment
– Usage of DDD to Identify and Design Services
– Microservice API Patterns

– DevOps Becomes Common Practice
– Challenge: Continuous Service Performance
 Assessment
– Monitoring Solutions
– Canary Releases, Dark Launches, A /B Testing

– Using FaaS to Implement
 Microservices Is a Mixed Bag
– Stationary Data, Function Passing
– However: Steep Learning Curve,
 Performance Challenges

– Choosing Among API Paradigms:
 RESTful, Asynchronous, GraphQL ...
– API Linting
– API Access Management

API Technologies,
 Management, and Evolution

Service Deployment and Operation

Service Implementation

Microservice-
Based Systems

INSIGHTS

JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 89

(i.e., CPU workload and resulting
cloud resource fees) add to these costs.
Complementing such tools and experi-
ences, we also discussed an emerging
catalog of microservice API patterns.6

This catalog collects knowledge and
best practices around a variety of re-
curring API-related problems (e.g.,
how to represent complex parameters,
how to handle pagination and API
keys, or how to best rate limit an API
and evolve it in client- and provider-
friendly ways) and is particularly use-
ful to teach common knowledge to
new services designers or students.
Although the catalog is still being ac-
tively developed, participant feedback
suggests that it already contains a host
of useful information.

API Technologies,
Management, and Evolution
One focus area of this year’s VSS was
APIs, as already indicated in the semi-
nar’s title. Building on the standard
HTTP protocol, publicly accessible
resource APIs emerged, enabling the
creation of ecosystems of third-party
applications. The large number of pub-
lic APIs attracts empirical research
efforts. Recent studies analyze large
numbers of APIs, often not by assess-
ing their implementation (which is in-
accessible to researchers in most cases)
but by analyzing API-related network
traffic,7 developer documentation,8 or
even exposed pricing plans and related
business models.9 Rich sources for fur-
ther research, for example, making
use of interactive visualizations, lie in
analyzing API specifications, which
are made accessible in user-main-
tained repositories like APIs.guru.10

For instance, the previously mentioned
microservice API patterns were empiri-
cally mined from public and nonpublic
APIs.11 Empirical works describe the
current state of APIs and identify com-
monly used practices. Furthermore,

observations from such studies form
the basis for prescribing best prac-
tices,6 point to possible pitfalls, and
motivate the creation of new develop-
ment approaches and tooling, or the
evolution of standards.

Within large systems, internal
APIs have long played a major role to
enable network-based communica-
tion between distributed components.
In the early 2000s, web services us-
ing Web Services Description Lan-
guage and SOAP were among the
many technologies used to implement
such APIs. In recent years, increas-
ingly, Representational State Trans-
fer [i.e., REST(ful) or REST-like]

APIs gained importance as well as
new takes on Remote Procedure Call
(RPC)-style APIs and asynchronous
API technologies.

The seminar participants discussed
a number of new API-related tech-
nologies, which reflects the increased
importance of APIs. GraphQL, e.g.,
allows clients to request data from
servers using statically typed queries,
which reduces overfetching and the
number of network round trips. By
adopting queries, clients can fetch dif-
ferent data without requiring the server
to change. Binary serialization formats
like protocol buffers optimize mes-
sage sizes and introduce static typing
to messages. Middleware frameworks
like gRPC and their extension librar-
ies or plug-ins build on these formats

to provide or enable the realization
of higher-level functionalities, for in-
stance, message tracing, load balanc-
ing, or streaming capabilities. Where
REST and REST-like APIs often
implement synchronous request–re-
sponse patterns, event-driven or reac-
tive architectures rely on asynchronous
APIs, where clients, e.g., subscribe to
topics and then continuously receive
messages for these topics. Asynchro-
nous communication protocols, i.e.,
MQTT, Apache Kafka, and Advanced
Message Queuing Protocol, enable
more loosely coupled connections be-
tween clients and servers, but as the
participants acknowledged, require

rethinking familiar synchronous de-
velopment practices. API specification
approaches specific for the various API
implementation options, for example,
OpenAPI12 for HTTP-based APIs or
AsyncAPI13 for asynchronous APIs,
enable better API documentation and
thus ease API management.

Despite these developments, or
maybe as a result of them, many chal-
lenges remain in the API space. Many
challenges are both technological and
organizational in nature. As the semi-
nar participants discussed, organiza-
tions struggle to be consistent in how
they design APIs, and they require
mechanisms to make internal APIs
easier to find and reuse. An API linter
that checks the adherence of APIs to
an organization’s design principles

A question that many seminar
participants identified as crucial is how
to identify constituent services and APIs
in a microservice-based application.

INSIGHTS

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

came up as an interesting future re-
search topic. API evolution, especially
when it comes to breaking changes,
requires careful consideration and in-
volves challenges like efficient commu-
nication with and support for affected
clients. This is especially challenging
when considering Hyrum’s law, which
states that, given sufficient users, all
observable behaviors of your system
will be depended on by somebody. Ac-
cess to APIs must be managed (espe-
cially for public APIs) to secure private
data but also to prevent inadvertent
misuse or even malicious attacks. Re-
searchers have identified challenges
in consuming APIs, including dealing
with varying quality of service, the
fact that APIs may sunset and eventu-
ally cease to exist, or lack of support
for refactoring client code.14

Service Implementation
For actually implementing services,
the discussion in the seminar centered
around the ideas of microservices (as
discussed previously) as well as server-
less and function-as-a-service (FaaS)
clouds. In FaaS, developers build sys-
tems as a collection of small, stateless
functions, often written in lightweight
scripting languages, for instance, Ja-
vaScript or Python. Individual func-
tions are triggered by infrastructure
events, such as incoming HTTP re-
quests or messages in a message queue.
Functions are registered with the cloud
provider, and function management,
routing, and scaling is handled trans-
parently by the cloud.

The usage of serverless functions to
implement APIs was conceived to be
a mixed bag in the seminar. They lift
operational concerns but at the same
time introduce new challenges, i.e.,
overcoming a steep learning curve,
complicating testing, hard-to-predict
operating costs, or limited applica-
tion portability.15 However, we also

discussed upcoming tools, for exam-
ple, the Nimbus framework,16 which
is designed to address these concerns
by providing an abstraction to deploy
code across serverless providers and
enabling local testing. Furthermore,
serverless functions provide opportu-
nities for new programming models,
including function passing for fault-
tolerant distributed programming using
stationary data through serializable,
passed functions.

Service Deployment
and Operation
In addition to questions of APIs and
software development, the seminar
raised the issue that the proliferation
of microservices and APIs also has im-
plications on operations teams. DevOps
is widely understood as an industry
standard for API-operating compa-
nies, but even in a DevOps team, the
frequent release of small, independent
services may pose challenges. In par-
ticular, various seminar participants
raised questions related to noise in
continuous integration (CI) builds
(e.g., related to flaky tests) and man-
aging nonfunctional service prop-
erties (e.g., service performance or
stability of API contracts). How, and
whether, service performance can be
assessed prior to actual deployment
(when middleware, such as Istio,17
can be used to implement canary re-
leases, dark launches, or A/B testing)
was discussed extensively. All seminar
participants agreed that continuously
testing performance (e.g., as part of
the CI pipeline) is challenging, if not
impossible, for most Internet-scale
services. However, for some classes of
applications (e.g., middleware, stor-
age solutions, or libraries), the usage
of continuous microbenchmarking
may make sense. Ultimately, service
quality management requires a ho-
listic approach that integrates basic

sanity checks within the build system
combined with postdeployment tech-
niques, for example, canary releases
or chaos engineering, meaning the de-
liberate introduction of failures to test
the resilience of an application.

The field of DevOps and mi-
croservice APIs continues to
develop a plethora of novel

concepts, technologies, and trends in
rapid succession and continues to pro-
vide exciting new developments that
enable many of the major software
impacts we can observe today. Each
and every one of them promises inter-
esting prospects for the future but at
the same time leads to major adoption
challenges. Many of the proposed so-
lutions and their corresponding chal-
lenges are, as has been observed for
software generally,18 new incarnations
of existing best practices, usually with
a substantial novel twist, leading to
new concepts and technology develop-
ments that render the prior generation
inferior. Foundational and empirical
research is required to carve out the
best practices and expected impact
on quality attributes at a conceptual
level, so that the research results will
stand the test of time while new con-
cepts and technologies keep emerging.
Such timeless knowledge can train in-
experienced DevOps and microservice
API developers more effectively and
more sustainably than any ephemeral
technology incarnation. At the same
time, novel approaches have to be de-
veloped to cope with the specific chal-
lenges that new contexts pose, i.e., the
serverless implementation option or
the massive scale of cloud applications.
Thus, a continuing exchange between
researchers (both from academia and
companies) and innovative practi-
tioners is required to let research and
innovations follow up on the current

INSIGHTS

JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 91

industrial needs, which are rapidly
evolving in bustling fields like DevOps
and microservice APIs.

References
1. DevOps and Microservice APIs, 2nd

Vienna Software Seminar. Accessed

on: Oct. 1, 2019. [Online]. Avail-

able: https://vss.swa.univie.ac.at/

2019/

2. On the Relation of Software Archi-

tecture and DevOps/Continuous De-

livery, 1st Vienna Software Seminar.

Accessed on: Oct. 1, 2019. [Online].

Available: https://vss.swa.univie

.ac.at/2017/

3. M. Fowler, “ MonolithFirst,” June,

2015 . [Online]. Available: https://

martinfowler.com/bliki/

MonolithFirst.html

4. Context Mapper, “A DSL for context

mapping & service decomposition,”

2019. [Online]. Available: https://con

textmapper.org/

5. GitHub, “MDSL,” 2019. [Online].

Available: https://socadk.github.io/

MDSL/index

6. Microservice API Patterns. Accessed

on: Oct. 1, 2019. [Online]. Available:

https://microservice-api-patterns.org

7. C. Rodríguez et al., “REST APIs:

A large-scale analysis of compliance

with principles and best practices,”

in Proc. Int. Conf. Web Engineering,

2016, pp. 21–39.

8. A. Neu mann, N. Laranjeiro,

and J. Bernardino, “An analy-

sis of public REST web service

APIs,” IEEE Trans. Serv. Com-

put., to be published. doi: 10.1109/

TSC.2018.2847344.

9. A. Gamez-Diaz, P. Fernandez, and A.

Ruiz-Cortes, “An analys is of REST-

ful APIs offerings in the industry,”

in Proc. Int. Conf. Service-Oriented

Computing, 2017, pp. 589–604.

10. GitHu b, “APIs-guru/openapi-di-

rectory,” 2019. [Online]. Available:

https://github.com/APIs-guru/

openapi-directory

11. U. Zdun, M. Stocker, O. Zimmer-

mann, C. Pautasso, and D. Lübke.

“Guiding architectural decision

making on quality aspects of mi-

croservice APIs,” in Proc. 16th Int.

Conf. Service-Oriented Computing

(ICSOC 2018), 2018, pp. 73–89.

12. Swagger, “ What is OpenAPI?” 2019.

[Online]. Available: https://swagger

.io/docs/specification/about/

13. AsyncAPI, “Building the future of

event-driven architectures,” 2019.

[Online]. Available: https://www

.asyncapi.com/

14. E. Wittern et al., “Opportunities in

software engineering research for

web API consumption,” in Proc. 1st

Int. Workshop API Usage and Evolu-

tion, 2017, pp. 7–10.

15. P. Leitner, E. Wittern, J. Spillner,

and W. Hummer, “A mixed-method

empirical study of function-as-a-

service software development in in-

dustrial practice,” J. Syst. Software,

vol. 149, pp. 340–359, Mar. 2019.

16. Nimbus. Accessed on: Oct. 1, 2019.

[Online]. Available: https://www

.nimbusframework.com

17. Istio. Accessed on: Oct. 1, 2019.

[Online]. Available: https://istio.io

18. Z. Obrenovic, “Insights from the

past: The IEEE software history ex-

periment,” IEEE Softw., vol. 34, no. 4,

pp. 71–78, 2017.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

U WE ZDUN is a full professor of software architecture at t he

University of Vienna, Faculty of Com puter Science, Vienna, Austri a.

Conta ct him at uwe.zdun@univie.ac.at.

ERIK WITTERN is a GraphQL lead architect at IBM, Hamburg,

Germany. Contact him at Erik.Wittern@ibm.com.

PHILIPP LEITNE R is an assistant professor of software engineer-

ing at Chalmers University of Technology and the University of

Gothenburg. Contact him at philipp.leitner@chalmers.se.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

