
98 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

SOFTWARE
ENGINEERING RADIO

Gavin Henry: What is OAuth, and
what is the difference between ver-
sions 1 and 2?

Justin Richer: It’s a delegation proto-
col that allows you to delegate rights
to another user to use an API [applica-
tion programming interface]. You can
set a service-specific password in an
automated fashion. Instead of user-
name and password, your application
can get an OAuth access token to ac-
cess the API for you. The application
never needs to know who you are.

OAuth1 and 2 are conceptu-
ally similar; they differ in how they
allow software to act on a user’s

behalf and the assumptions underly-
ing their design. OAuth1’s purpose
was to connect two websites. As the
Internet changed, people were build-
ing API-driven websites, and mo-
bile applications interacted more on
the Web, we took the best parts of
OAuth1 and streamlined it. OAuth1
was a monolithic protocol; OAuth2
allows greater flexibility.

OAuth was a reaction to Web APIs
that were deployed with HTTP basic
authentication, asking for username
and password. The OAuth token-
based model allows you to create a
new credential that represents just that
piece of delegated software working
for that user instead of that user and all
of their rights to the protected API. A
key strength of the OAuth token-based

model is provision of a new token for
every service and client application.
They don’t have to be memorized or
managed by the user. Because every-
one has a different identifiable access
token, both the client and the server
can monitor who’s doing what.

How do mobile-app developers use
OAuth2?

The app lives on the device, has ac-
cess to the storage, and is saving a
token or some type of data on that
device. It runs, lives, and executes on
the device itself, outside of the con-
text of the system browser.

People weren’t doing that when
we were writing OAuth2. There was
a brighter line between Web-based

Justin Richer on OAuth

 Gavin Henry

From the Editor

In Episode 376 of “Software Engineering Radio,” Justin Richer, lead author of OAuth2

in Action and editor of OAuth extensions RFC 7591, 7592, and 7662, discusses the

key technical features of the OAuth 2.0 protocol for authorization. Gavin Henry spoke

with Richer about browser-based OAuth2, types of tokens, OpenID Connect, PKCE,

JavaScript Object Notation Web Token pros and cons, where to store them, client

secrets, single-page apps, mobile apps, current best practices, OAuth.XYZ, HEART,

MITREid, token validation, dynamic client registration, the decision factors of the

various types of authorization grants to use, and what is next for OAuth. To hear the

full interview, visit http://www.se-radio.net or access our archives via RSS at http://

feeds.feedburner.com/se-radio.—Robert Blumen

Digital Object Identifier 10.1109/MS.2019.2949648
Date of current version: 24 December 2019

SOFTWARE ENGINEERING RADIO

 JANUARY/FEBRUARY 2020 | IEEE SOFTWARE 99

applications, browser-based ap-
plications, and native applications.
JavaScript now runs everywhere, and
there are wrappers, repackagers, and
cross-compilers for many languages
and platforms, so you can’t predict
how an application will function based
on just the language that it’s written in.

With mobile apps, or native apps in
general, you can do a dynamic regis-
tration instead of a static registration.
The instance of the client-application
software wakes up and knows that to
talk to this API, it needs to talk to a
specific OAuth authorization server.
But it will realize that it doesn’t have
a client identifier or client secrets or
keys associated with it, so it must go
get something.

It would know the endpoint at a
minimum. Even then, there are ex-
tensions to OAuth that allow for re-
source-based discovery for common
APIs, such as OpenID Connect. You
can discover all of that from a single
piece of user input. Once you know
which authorization server you need
to talk to, the client software directly
calls the server. The server then can
provide a client identifier, most im-
portantly, and, in many cases, a cli-
ent’s secret.

If you have a mobile application
installed on a million different de-
vices, a client’s secret is not secret
anymore; a configuration-time secret
that is part of the build or deploy-
ment process will not stay secret. But
if we can turn that into a runtime se-
cret, mobile apps do fine. A lot can
be done to store and manage runtime
secrets. There are even security en-
claves covered by localized biomet-
rics where you can store things on
today’s platforms.

How do you prove that that client
is something you know about, to al-
low access?

There are some things built into the
dynamic client-registration protocol
in OAuth, such as RFC [request for
comments] 7591. It is for native apps,
but Web-server-based and browser-
based apps can use it too. This proto-
col lets you set up the environment so
that all of those assumptions about
which secrets and identifiers are in
place before the OAuth protocol be-
gins can be put there.

At initial registration, you can
pass on a software statement, which
is a signed assertion, to help identify
you. It’s actually a JSON [JavaScript
Object Notation] Web Token (JWT)
format that identifies attributes the
client should be asking for. This is
like a fingerprint of this application,
signed by a third party’s trusted key.
This allows us to look at a piece
of software and anticipate expected
behavior, so that we can recognize
anomalies.

Are JWTs the preferred format for
the tokens?

Not necessarily. JWTs are the most
common structured, self-contained
token format in OAuth, but neither
OAuth1 nor OAuth2 care what
the format of this token is; you just
have to be able to put it into an
HTTP header.

OpenID Connect was built as
an identity layer on top of OAuth2.
When OpenID Connect was being
ratified, we looked at classic Open ID
systems, which were a redirect-based,
website-focused identity protocol. It
was difficult to integrate them with
OAuth1, which was a website-focused
authorization protocol.

Nobody ever wants pure authenti-
cation or pure authorization. They al-
most always want to know something
about the user so they can contact the
user if something goes wrong. But

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
 • 383— Neil Madden, author of API Security in Action and the security director

of ForgeRock, discusses the key technical features of securing an API.
Host Gavin Henry spoke with Madden about authentication, tokens,
encryption, integrity, rate limiting, authorization, and access control.

 • 381— Josh Long, a developer advocate at Pivotal, discusses the history,
features, benefits, and tooling of the popular platform Spring Boot
with host Simon Crossley.

UPCOMING EPISODES
 • Ryan Singer discusses BaseCamp’s development process, as described in

his book Shape Up, with host Nate Black.
 • Spencer Dixon talks about WebRTC and building streaming applications

with host Jeremy Jung.

SOFTWARE ENGINEERING RADIO

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

when we were developing OAuth2,
the idea with OpenID Connect was to
start with the authorization protocol
of OAuth2. You have the user show
up and authorize access to something.
But the question is, what are they au-
thorizing access to? With OpenID
Connect, they are authorizing access
to their identity information. You

treat their identity, instead of the au-
thentication, as the primary thing—I
have to know who you are, and then
I’ll figure out what I’m going to let
you do.

As a consequence, OpenID Con-
nect and similar identity proto-
cols are the most common uses of
OAuth2. Unfortunately, that means

that people think of OAuth2 as an
authentication protocol, or as a login
system, which it is not.

What is one thing you wish you
could teach every developer about
authorization?

Authorization looks simple, but there
are many places where it can go side-
ways. Read the best practices and
use trusted libraries. OAuth has been
around long enough that there is
good, well-established community
work available on any platform. Also,
be aware that with single-page apps,
OAuth and authorization delegation
might not be the solution that your
problem needs. OAuth is a powerful
and elegant tool for doing one specific
thing, but it’s not a panacea. You can’t
just add it to a system and then magi-
cally get security.

ABOUT THE AUTHOR

GAVIN HENRY is the founder of SureVoIP, an Internet telephony service

provider, and has written most of the software that sticks it all together.

His research interests include all aspects of software engineering, identity

management (especially around Open LDAP), all layers of the network

stack, systems programming, and the free software ecosystem. Henry

received his engineering degree in electronics communications. Contact

him at ghenry@surevoip.co.uk.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2020 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

