
IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E MARCH/APRIL 2020 | IEEE SOFTWARE 3

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute,
ipek.ozkaya@computer.org

SOFTWARE DESIGN INVOLVES
the process of understanding the
requirements and creating the artifacts
that specify these requirements as the
product to be built. The specification
of the requirements ultimately hap-
pens in code. Intermediate abstraction
mechanisms, such as domain model-
ing languages, software design and
architecture patterns, programming
paradigms, and design fragments,
assist software engineers to specify
requirements further into the final
designs as implementations. How-
ever, in the absence of commonly
agreed-upon building blocks that
assist software engineers in trac-
ing the design specification across
software elements, these abstraction
mechanisms become sources of un-
intended errors. Consequently, de-
spite the availability of many software
development l i fecycle processes
and implementation tool support, de-
signs erode and drift from their intent
quicker than anticipated.

Software design refers to both
the process of creating the software
product as well as the characteristics

of the product itself. Design think-
ing and similar approaches assist
software engineers during the design
process through prototyping, testing,
and experimentation of concepts.1

Techniques such as visualization or

use of metaphors provide software
engineers tools to further prog-
ress their designs.2 However, ulti-
mately the vocabulary—the building
blocks—that software design gets
expressed and delivered to its end us-
ers is through code.

The ease of creating and build-
ing code, compared to creating
and building any other engineer-
ing product that requires manufac-
turing steps, lies at the heart of the
software complexity, design drift,
rework, and catastrophic failure

challenges of the software industry.
The software design process gets
cut short, code is not utilized effec-
tively to design but to quickly imple-
ment the changes, creating a gap
between the optimal design and the

actual deployed design. In an effort
to bridge this gap, we need better
building blocks that assist software
engineers to design and communi-
cate the design as well as construct
the design.

Code as Software Design?
In his 1992 essay, “What Is Software
Design?” Reeves suggests that one of
the reasons C++ as a programming
language had become popular was
because C++ made it easier to design
software and program it at the same

Building Blocks of
Software Design
Ipek Ozkaya

Digital Object Identifier 10.1109/MS.2019.2959049
Date of current version: 12 February 2020

Programming is not solely about
constructing software—programming
is about designing software.

FROM THE EDITOR

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

time.3 Reeves also argues that the
only documentation that satisfies
the engineering criterion of the abil-
ity to build software to a specification
is the source code as an engineering
document itself. The act of con-
structing (manufacturing) in soft-
ware is taken care of by compilers.

Reeves observes that one rea-
son why software gets complex very
quickly is a consequence of the fact that
building the design in software is a sim-
ple push-button compile action, with
much less overhead of manufactur-
ing. Today, building and deploying the
end product is further simplified by the
increasing capabilities of DevOps auto-
mation pipelines. Ease of making and
deploying changes results in a focus
on delivering the changes, as opposed
to making the changes with sound
design. Because creating the source
code as the document and its con-
struction by the compiler is perceived
to be cheaper activities, subsequent
changes, iterations, and evolutions are
often done reactively, many times re-
sulting in adding unintended complex-
ity to software.

Building blocks that are expres-
sive enough to represent software
design as well as its construction
should provide ability to specify in-
formation about the components,
such as how elements communicate,
what states elements are in, and
what states persist as well as strong
type checking that allows for detect-
ing errors. If the ultimate representa-
tion of the design becomes the code,
next-generation programming lan-
guages should make a targeted effort
in their expressive power for repre-
senting such design characteristics.

Models as Software Design?
A key criticism against “the design
is in the code” perspective is often
the inability of the code to express

runtime properties, the static and dy-
namic communications, and cross-
cutting concerns across different
elements of the software. Architec-
ture thinking assists in capturing these
kinds of specifications and system
properties, and architecture model-
ing languages provide a vocabulary
to express them. However, the high-
level architecting process can be sev-
eral steps removed from the act of
programming. Model-based soft-
ware engineering approaches use for-
mal modeling languages that generate
code to fill this gap; however, these
techniques are still yet to be robust
enough to represent the software prod-
uct comprehensively. General-purpose
modeling languages, such as UML,
have failed in providing the necessary
level of formalism in an effort to
provide general enough design repre-
sentation. Other modeling languages
that provide tighter formal speci-
fications and code generation capa-
bilities, such as Architecture Design
and Analysis Language (AADL),
have limited scope.4

Ironically, the needs expressed
by software developers and archi-
tects from software architecture and
modeling languages are no different
than their needs from programming
languages that they should be ex-
pressive enough to represent design.
A study conducted with 48 practi-
tioners from 40 IT companies re-
vealed that architecture languages
are not closing the software design
expressiveness gap any better.5 The
top gap software engineers found
as a barrier in industry for using
existing architecture modeling lan-
guages was their limited formalism
to support design analysis. The most
commonly cited limitations included
lack of ability to express quality at-
tribute properties, such as latency,
throughput, propagation of change,

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

help@computer.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FROM THE EDITOR

 MARCH/APRIL 2020 | IEEE SOFTWARE 5

and lack of formality resulting in lan-
guages with no precise semantics.

Closing the Gap
Designing and delivering a software
product, like any other engineering
product, is a complex process that in-
volves many activities, artifacts, and
stakeholder communication techniques
to collect, implement, and verify the
requirements. Agile software develop-
ment processes and the availability of
better deployment tools have resulted
in the reduction of errors that stem
from communication barriers and de-
lays introduced due to high-ceremony
processes. The ultimate challenge in
improving software products remains
to be figuring out how to avoid the
design errors and inconsistencies in-
troduced among the many layers of ab-
straction that are essential in managing
the complexity of the process.

Programming is not solely about
constructing software—programming
is about designing software. Think-
ing about the source code as the de-
sign does not imply don’t design, just
code. Good architecture and abstrac-
tions are essential. Similarly, archi-
tecting is not solely about designing
software, architecting is about con-
structing software. Software engi-
neers increasingly require high-level
programming languages that are
closer to how software engineers
think and design software as well as
modeling languages that are closer to
how detailed designs can be realized

in code. While we continue to groom
architects that think in code and de-
velopers that think in design, there
are also opportunities for developing
better programming languages that
can express design and better tools
that provide automated support for
iterative design and design confor-
mance.

References
1. A. Combelles, C. Ebert, and

P. Lucena, “Design thinking,” IEEE

Softw., vol. 37, no. 2, pp. 21–24,

Mar./Apr. 2020.

2. M. Petre, “Insights from expert

software design practice,” in Proc.

7th Joint Meeting of the European

Software Engineering Conf. and the

ACM SIGSOFT Symp. Foundations

of Software Engineering, Amster-

dam, The Netherlands, 2009, pp.

233–242.

3. W. J. Reeves, “What is software

design?” developer.*, 2005. [Online].

Available: https://www.developerdot

star.com/mag/articles/reeves_design

.html

4. P. H. Feiler and D. P. Gluch, Model-

Based Engineering with AADL—An

Introduction to the SAE Architec-

ture Analysis and Design Language

(SEI Series in Software Engineering).

Reading, MA: Addison-Wesley, 2012.

5. P. Lago, I. Malavolta, H. Muccini, P.

Pelliccione, and A. Tang, “The road

ahead for architectural languages,”

IEEE Softw., vol. 32, no. 1, pp.

98–105, 2015.

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@
ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@
computer.org
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
Senior Advertising Coordinator: Debbie Sims
IEEE Computer Society Executive Director:
Melissa Russell

CS PUBLICATIONS BOARD
Fabrizio Lombardi (VP of Publications),
Cristiana Bolchini, Javier Bruguera,
Carl K. Chang, Fred Douglis, Charles Hansen,
Shi-Min Hu, Antonio Rubio, Diomidis Spinellis,
Stefano Zanero, Daniel Zeng

CS MAGAZINE OPERATIONS
COMMITTEE
Diomidis Spinellis (Chair), Lorena Barba,
Irena Bojanova, Shu-Ching Chen,
Gerardo Con Diaz, Lizy K. John,
Marc Langheinrich, Torsten Möller, David Nicol,
Ipek Ozkaya, George Pallis, VS Subrahmanian,
Jeffrey Voas

IEEE PUBLICATIONS
OPERATIONS
Senior Director, Publishing Operations:
Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion
and Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2020.2972682

