
98 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 20©2020 I EEE

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

SOFTWARE
ENGINEERING RADIO

Adam Conrad: Please give an over-
view of Elixir and Phoenix.

Chris McCord: Elixir is a program-
ming language developed in 2011.
It’s been successfully used in pro-
duction for at least five years. It
runs on the Erlang virtual machine
(VM) and can use everything that’s
available in Erlang. In addition to
being a functional language, it has
a concurrency model that has pre-
emptive scheduling, allowing us to
scale to millions of users per server
and build distributed systems in a
different way than most modern
languages.

Phoen ix i s the de fac to Web
framework for Elixir. I had worked
on building primarily Ruby-on-Rails

applications for six years before
starting Phoenix. I had found that
making the real-time Web work
with Rails was not viable. I had
worked on a library to do real-time
updates with Rails, and I knew it
wasn’t going to scale or be reliable.
We applied both our positive and
negative experiences with Rails to
the framework.

I found an article on Erlang and
remembered that Jose Valim, from
the Rails core team, had started a
language called Elixir to run on the
Erlang VM. I got excited about the
prospect of scalability with Erlang.
I got hooked on Elixir immediately,
and all I needed to do to use it for
everything I wanted to build was to
write a Web framework, because
none existed in Elixir at the time.
People started using my framework,
and here we are today.

LiveView is now a big part of that
experience. What is LiveView and
what inspired you to create it?

LiveView is a way to build rich, inter-
active applications without having to
write JavaScript. LiveView has been
in development for about a year. We
had to build all the plumbing with the
Phoenix Web layer, Phoenix’s real-
time layer, and Phoenix PubSub. These
building blocks allowed us last year to
accomplish what I was trying to solve
with Ruby—to write real-time applica-
tions, server rendered, but with almost
all of the benefits of a single-page app.

What are the shortcomings of Java-
Script and JavaScript development
for client-to-server interactions?

JavaScript allows us to do a lot of things
that are impossible to do otherwise.

Chris McCord on Phoenix’s
LiveView Functionality
Adam Conrad

Digital Object Identifier 10.1109/MS.2020.2968207
Date of current version: 16 April 2020

From the Editor

In Episode 394 of “Software Engineering Radio,” Chris McCord, creator of the

Phoenix framework and author of Programming Phoenix 1.4, discusses Phoenix’s

LiveView functionality. Host Adam Conrad spoke with McCord about how LiveView

was created, use cases for integrating LiveView with Phoenix applications, the ben-

efits and drawbacks of LiveView in comparison to such frameworks as React, Angu-

lar, and Vue, and the internal workings of LiveView. To hear the full interview, visit

http://www.se-radio.net or access our archives via RSS at http://feeds.feedburner

.com/se-radio.—Robert Blumen

SOFTWARE ENGINEERING RADIO

	 MAY/JUNE 2020 | IEEE SOFTWARE � 99

But with modern JavaScript devel-
opment, every time we’ve gone all
in on a single-page app, it has al-
ways been more complex than its
server-rendered counterpart, bug-
gier, and harder to evolve with the
pace of change.

A lot of us accept the complexity
of JavaScript development for good
reasons, but it’s a huge burden. The
pain comes from overly complex so-
lutions. Single-page apps are inher-
ently more complex, and that’s what
leads to the pain. LiveView provides
an alternative that gives us these bits
of rich user experience (UX) that we
can operate with a normal server-ren-
dered model.

Can you use JavaScript in some places
and LiveView in others, or even on the
same page?

Yes. We give you an escape hatch to
write JavaScript as needed. Those
two worlds coexist.

Is LiveView JavaScript or Elixir or a
combination of both?

A combination. At the moment, it’s
like 1,300 lines of JavaScript that we
write for you that powers all of this.
It’s not a lot of JavaScript. The real in-
novation happens on the server with
LiveView, but it does require JavaS-
cript on the client to update the page.

What we send on the initial page
render is just HTML. So, even if
you’re a Web crawler or you have Ja-
vaScript disabled, you will get a ren-
dered HTML page. There’s a lot of
benefit that we get even if we have
JavaScript running behind the scenes
once we connect to the server. Since
you have a full HTML page, you can
now immediately distribute that
for search-engine optimization
(SEO) purposes.

LiveView allows us not only to
skip all the single-page-app JavaS-
cript complexity, but it also removes
an entire abstraction layer of just
Web development. With JavaScript,
even from the simplest feature that
you could write for a client-side
app, you have some level of server
communication. You have to create
an HTTP endpoint and write code
between the client and server. It will
also involve setting up the route in
your router and figuring out the
naming for the controllers.

These are all easy to do, but
you’re making decisions just to get
these client–server worlds glued to-
gether. Then you’re having to write
what the payload looks like on the
server, how you serialize the data
structures in Elixir or whatever lan-
guage you’re using, and how you
get them back to the client. The
client has to also be aware of this
kind of payload contract. Whereas,

with LiveView, all of this falls away,
which vastly simplifies the program-
ming model of building a Web app.

Is there an ideal application that
LiveView is suited for?

It’s especially well suited for the bor-
ing business problems that we’re all
solving repeatedly, which is a large
class of applications. If you’re writ-
ing a static HTML template appli-
cation today that just renders some
tabular data, you have the option to
make that real time, out of the box,
with the same amount of work. It
unlocks potential for applications
that you’re already used to writing,
and it also allows you to accomplish
more complex user experiences in
less time.

Dashboards are a great exam-
ple. Any time you’re trying to dis-
play information that’s frequently
changing and you want the client

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
•• 396—Barry O’Reilly of Black Tulip Technology discusses Antifragile Architec-

ture, an approach for designing systems that actually improve in the face of
complexity and disorder with host Jeff Doolittle.

•• 395—Host Justin Beyer discusses security and privacy concerns as they
relate to machine learning with Katharine Jarmul of DropoutLabs.

•• 393—Jay Kreps, chief executive officer of Confluent, discusses an
enterprise integration architecture organized around an event log with host
Robert Blumen.

UPCOMING EPISODES
•• Pat Helland on data management at scale.
•• Jeremy Miller on waterfall compared to agile.
•• Rich Harris on Svelte.

SOFTWARE ENGINEERING RADIO

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

to update, you can just write a sin-
gle line in your LiveView that sub-
scribes to some PubSub events and
then two more lines of code. Your
dashboards will just update with the
current requests per second, the cur-
rent weather, current tickets, what-
ever you need for your business.

The only thing that it ’s not
good for would be something that

requires offline mode because, if
you can’t connect to the server, that
leaves you in a read-only state. But
we haven’t found out where it’s not a
good fit yet, provided that you don’t
need offline support or desktop-
like functionality.

What would be a business case for why
LiveView is preferable to React or plain

JavaScript? What kind of performance
gains have you seen with LiveView?

I don’t have hard numbers yet. If I
had to guess, I believe it’s an order-
of-magnitude reduction in lines of code.
That also doesn’t account for the serv-
er-side code that you may not have to
write. Speed of development and pro-
ductivity are going to be unbeatable
compared to a single-page app.

With LiveView there is no HTTP
overhead, no parsing the session,
no authentication. We don’t have
to fetch the current user from the
database, because we already have
them. Although it is counterintui-
tive, we can have a faster, less-latent
user experience with a server-ren-
dered app compared to a single-
page app, and we also produce less
data on the wire.

ABOUT THE AUTHOR

ADAM CONRAD is a director of engineering at Indigo with more than a

decade of experience in software development. His interests include user

experience, human–computer interaction, front-end Web development,

and augmented/virtual reality. Conrad received his engineering degree

from Brown University. Contact him at conradadam.com.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2020 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

