
ar
X

iv
:1

90
5.

10
67

7v
3

 [
cs

.S
E

]
 2

6
Fe

b
20

20
ACCEPTED BY IEEE SOFTWARE 1

An Exploratory Study on Machine Learning Model
Stores

Minke Xiu∗, Zhen Ming (Jack) Jiang†, Bram Adams‡

York University - Toronto, Canada∗† - {xmk233∗, zmjiang†}@eecs.yorku.ca
Polytechnique Montréal, Montréal, Canada‡ - bram.adams@polymtl.ca‡

Abstract—Recent advances in Artificial Intelligence, es-

pecially in Machine Learning (ML), have brought applica-

tions previously considered as science fiction (e.g., virtual

personal assistants and autonomous cars) into the reach of

millions of everyday users. Since modern ML technologies

like deep learning require considerable technical expertise

and resource to build custom models, reusing existing

models trained by experts has become essential. This is

why in the past year model stores have been introduced by

several organizations (e.g., Amazon and Wolfram), which,

inspired by mobile app stores, provide public access to pre-

trained models and infrastructure to deploy/evaluate/re-

train. This paper conducts an exploratory study on three

popular model stores that compares the information ele-

ments (features and policies) provided by them to those

used by two popular mobile app stores. We have found

that the three stores share a common foundation (65%

of elements shared). There are also eight elements (e.g.,

cloud deployment and technical documentation) unique

to model stores, as those are targeted towards software

engineers instead of end-users (for mobile stores). Among

the four elements unique to app stores, two elements

(review policy and permission) could also be applicable

to model stores and have a critical impact on the safety

and performance of ML applications. The majority of

the models from Wolfram and ModelDepot originate from

published research prototypes. There are only a few similar

offerings of ML models among the three stores.

I. INTRODUCTION

Artificial Intelligence is gaining rapid popularity in

both research and practice, due to the recent advances

in the research and development of machine learning

(ML). Many ML applications (e.g., Tesla’s autonomous

vehicle and Apple’s Siri) have already been used widely

in people’s everyday lives. McKinsey recently estimated

that ML applications have the potential to create between

$3.5 and $5.8 trillion in value annually [8].

Despite this rapid advance, the development of ML

applications is quite different from conventional software

applications [12]. For example, conventional software

applications like e-commerce or mobile applications are

developed based on specifications and carefully designed

algorithms, whereas ML applications are mainly devel-

oped by feeding data into ML algorithms (a.k.a., the

process of training ML models) followed by integrating

the resulting models within a conventional application.

Training ML models can be very costly, as it requires

running on expensive hardware equipment for a long

period of time [15]. Therefore, similar to importing third

party libraries for developing conventional systems, it is

now a common practice to reuse pre-trained ML models

for developing ML applications. In particular, Gartner

has recently identified leveraging pre-trained ML models

deployed as web services to be one of the top technology

trends [5]. Popular frameworks like Tensorflow [6] and

PyTorch [7] provide high level API support to easily

integrate a set of common ML models.

Since deploying and serving ML models is still a

non-trivial task, which requires deep knowledge in ML

and system adminstration [13], various organizations

recently have ML models stores introduced to facilitate

the distribution and retail of ML models to organiza-

tions/developers. Inspired by mobile app stores, model

stores promise to fill the gap between highly specialized

AI experts and software developers who are willing to

integrate pre-trained ML models into their system, with

or without customization (retraining).

However, what makes model stores unique in terms

of the information elements (features and policies) pre-

sented about their products (models)? What kind of

models are offered in such stores? This paper conducts

an exploratory study on three general-purpose model

stores (AWS marketplace [1], ModelDepot [2], and Wol-

fram neural net repository [4]) to address the above two

research questions. The contributions of this paper are:

• The first empirical study on ML model stores.

• An overview on the current state-of-the-art of ML

model stores.

• A discussion on identified practices and challenges

on distributing and retailing pre-trained ML models.

http://arxiv.org/abs/1905.10677v3

ACCEPTED BY IEEE SOFTWARE 2

II. BACKGROUND AND RELATED WORK

A. App Stores and Model Stores

Despite their difference in age, app and model stores

provide platforms for developers to distribute and retail

their products to their intended target audience (end

users vs. organizations/developers). App stores have been

around for over ten years. Apple’s App Store and Google

Play, both started in 2008, are currently two of the most

popular app stores. Each contains over two million apps.

These app stores include mobile apps and software appli-

cations for computers (e.g., Mac App Store) and tablets

(e.g., Chromebook and iPad). In contrast, the concept

of “model store” is relatively new, with ModelDepot

starting in 01/2018, Wolfram neural net repository in

06/2018, and AWS marketplace in 11/2018. For brevity,

we will call these three model stores as “ModelDepot”,

“Wolfram”, and “AWS”.

There are two types of model stores: (1) general pur-

pose, and (2) specialized model stores. General purpose

model stores (e.g., AWS) contain all sorts of ML mod-

els, whereas specialized model stores (e.g., Nuance AI

market [3]) only contain models from certain domains.

We focus on the general purpose model stores, since they

target a much wider audience of organizations/developers

and can provide a more representative view of SE

practices on ML models.

B. Empirical Studies on Mobile App Stores

There is a large corpus of research on empirical

studies of the mobile app stores (e.g., information ele-

ments [9], user reviews [10], and update frequency [11])

on understanding and improving the quality of the apps.

Since the information elements in app stores by now are

widely understood, this paper focuses on an empirical

comparison of app stores to the newly introduced model

stores.

III. RQ1: WHAT KIND OF INFORMATION ELEMENTS

DO MODEL STORES PROVIDE?

This RQ compares (1) the information elements

among three model stores; and (2) the information ele-

ments between model stores and app stores. Collectively,

we use the term “product” to refer to either an ML

model or a mobile app. When referring to products from

individual stores, we use the term “models” and “apps”,

respectively.

A. Data Extraction

For each of the three considered model stores, we used

open coding [14] to label the structure of the webpages

used to sell/provide models. Two coders separately split

up each page into “information elements”, sections that

provide a specific functionality geared towards the store’s

clients. For example, a section can provide a description

or the price of a product. We started with the two app

stores and tried to rediscover the reported information

elements from Jansen et al. [9]. Since two app stores

may use terms differently, we manually merged the cor-

responding information elements among them. Certain

elements from that paper are in considerable detail (e.g.,

different revenue models), we merged those detailed

elements under higher-level elements, where they apply.

In the end, all information elements from [9] were found

by our study. Furthermore, ten additional store elements

were found by us concerning release notes and product

permissions, as app stores kept evolving since 2013. A

similar process was performed on model stores and new

elements unique to the model stores were found. For all

stores, we grouped related elements into larger dimen-

sions (e.g., user feedback, usage statistics,

pricing under the Business dimension). This process

was conducted by the first two authors of this paper, and

later verified by the third author to ensure correctness.

In the end, we have identified 26 unique elements

across six different dimensions among all the stores as

shown in Table I. Each row corresponds to one element,

while a ✔ indicates the presence of that element in a

given store.

B. Comparison among Model Stores

Among the total of 26 store elements, 20 exist in

one or more model stores and 13 are common among

the three studied model stores. Below, we detail our

comparison results for each dimension:

• The Product Information dimension contains ele-

ments describing the characteristics of the model

that is being distributed on the model stores.

Only two elements (owner and description)

are common among the three model stores. The

owner element shows the contact information from

the developers who submitted a model, while the

description explains its objectives and func-

tionalities. In addition to the above elements, Mod-

elDepot and Wolfram provide information regarding

the models’ size on disk. ModelDepot also has

a unique demo element allowing users to try out

an ML model inside the browser without installing

it. Models in AWS and Wolfram usually include a

version number for each release, so that their

users can easily tell whether they are using the

current version of the model.

ACCEPTED BY IEEE SOFTWARE 3

Table I: Comparing elements among the five mobile app and model stores. We use the term “product” to refer to both “mobile

apps” and “ML models”.

Dimension Element
Model Store App Store Description

(AWS ModelDepot Wolfram) (Apple Google)

Product
Information

Owner ✔ ✔ ✔ ✔ ✔ Developer information of this product.
Description ✔ ✔ ✔ ✔ ✔ The objectives and the functionalities of

this product.
Demo ✔ A functionality provided for end users, so

that they can try before buying/deploying
the product.

Language ✔ Languages used in the user interface of this
product.

Size ✔ ✔ ✔ ✔ Size of the product in disk.
Version number ✔ ✔ ✔ ✔ The version number of the current release.

Permission ✔ The list of hardware/software resources
needed from a user’s device to properly run
this product.

Age rating ✔ ✔ Constraints about the user’s age.

Technical
Documentation

User instruction ✔ ✔ ✔ Instructions on how to use this product.
Framework ✔ ✔ ✔ The underlying development framework

for the ML algorithms used in this product.
ML Algorithms ✔ ✔ ✔ The types of ML algorithms used in this

product.
Training set ✔ ✔ ✔ Datasets used for training the underlying

ML algorithms.
Performance ✔ ✔ ✔ The performance (e.g., precision, recall,

and accuracy) of the underlying ML algo-
rithms.

Origin ✔ ✔ ✔ Source of where the product originally
came from (e.g., academic papers, open
source products).

Release notes ✔ ✔ ✔ Information regarding the changes in the
current version of the product.

Delivery

Deployment
instructions

✔ ✔ ✔ Instructions on how to deploy and config-
ure the product.

Compatibility ✔ ✔ Information on which platforms and ver-
sions are compatible with the product.

Local installation ✔ ✔ Automated installation of the product to a
user’s device.

Cloud deployment ✔ ✔ ✔ Automatically deploying the product
within the provider’s cloud infrastructure.

Business

Pricing ✔ ✔ ✔ ✔ ✔ The pricing information about this product.
User feedback ✔ ✔ ✔ ✔ ✔ User feedback (e.g., rating and comments)

of this product.
Usage statistics ✔ ✔ Number of downloads for this product.

Product
Submission &
Store Review

Online submission ✔ ✔ ✔ ✔ Developers can automatically submit new
versions of their products online.

Store review policy ✔ ✔ Documentation on policies for developers
to follow in order to get approval of the
product.

Legal
Information

End user license ✔ ✔ ✔ ✔ ✔ Regulations on how users can use this
product.

Developer license ✔ ✔ Regulations on how developers can further
expand, integrate, and distribute a product
in an authorized way.

ACCEPTED BY IEEE SOFTWARE 4

• The Product Documentation dimension contains

the development-specific information related to an

ML model. Different from app stores, all three

model stores contain user instructions, as

the users of ML models generally are organiza-

tions/developers. They will likely reuse a model as

is in a similar or different product context (trans-

fer learning), re-train a model using the provided

training scripts or extend it by adding additional

elements to the model. Hence, instead of a purely

textual description, the user instruction for

ML models generally contains programming exam-

ples in the form of scripts (e.g., Jupyter notebooks).

Different from AWS, ModelDepot and Wolfram

contain many models originating from research pro-

totypes or open source software products published

on GitHub or authors’ websites. The origin in-

formation of the models from these two stores is

displayed in a dedicated section. So does the infor-

mation about the framework (e.g., TensorFlow)

used to train a model and the ML algorithm

(e.g., Convolutional Neural Network). In ModelDe-

pot, the information regarding the framework and

the ML algorithm is prominently displayed at

the top of each ML model’s page. In Wolfram,

more detailed framework and ML algorithm

information is provided (e.g., number of layers

and parameters for neural network architectures).

In contrast, only about 4% of AWS models provide

the origin information, 6% provide framework

information, and 20% provide ML algorithm

information.

Among the three model stores, Wolfram and Mod-

elDepot have dedicated areas to display detailed

information about the training set used for

a model, and its statistical performance on a test

dataset. However, usually only a URL is provided,

without deeper discussion of the expected data

schema. Furthermore, different performance metrics

are used for different models, even for products

within the same domain. For example, some image

classification models used the overall accuracy met-

ric under 10-fold cross validation, whereas others

used “top-1”/“top-5” accuracy under 2-fold cross

validation. Very few (∼ 3%) AWS models provide

performance results and such information is not

presented in a structured manner. Whenever a model

is updated to a newer version, it is important to

document the changes (e.g., feature updates or bug

fixes) in a release notes document. However,

such information is missing or poorly presented in

model stores. Although AWS contains release notes,

they are usually very brief with only one or two

sentences. ModelDepot does not contain version

number and release notes.

• The Delivery dimension contains two elements re-

lated to the installation and configuration of ML

models. Running ML models usually requires spe-

cialized hardware (e.g., GPU) or high performance

servers. Furthermore, installing and configuring the

needed software components for an ML model is a

non-trivial task. Hence, all three model stores pro-

vide deployment instructions. AWS and

Wolfram provide dedicated cloud infrastructure to

run all their models, which greatly eases the deploy-

ment of these ML models for users. While Mod-

elDepot also provides cloud support, it currently

only supports one model.

• The Business dimension contains three elements

related to the business aspects of the products. All

three model stores contain price information for

their products. This information usually includes

the costs of using the store’s cloud infrastructure

(e.g., VMs and ML APIs). However, the pricing

scheme is rather complex and not directly tied to

the usage context of end users. For example, AWS

charges users on the cloud VM infrastructure and

the usage of the model package for training and pre-

dicting. Without any performance estimations (e.g.,

the duration of training/prediction under a particular

setup), it is not clear how much one user will be

charged for their tasks. The usage statistics

are missing in AWS and Wolfram. Although Mod-

elDepot provides the number of downloads for each

model, it did not provide any information about the

types of infrastructure nor the number of API calls

for individual products. Such information would be

very valuable for software engineers to scale and

optimize their ML applications.

• The Product Submission & Store Review dimen-

sion contains the information related to submission

of a model to the store and to review feedback

from the stores. The submission process for AWS

and ModelDepot just requires to upload a model

online, whereas developers have to contact the

store owners of Wolfram in advance to arrange the

model submission. None of the three model stores

contain any publicly available development policies

regarding product reviews and approval.

• The Legal Information dimension contains ele-

ments related to licensing information of this prod-

uct. For example, all model stores contain end

user licenses. The majority of AWS products

are developed by commercial companies, whereas

ACCEPTED BY IEEE SOFTWARE 5

the most of the models from Wolfram and Mod-

elDepot are based on research prototypes or open

source projects. As such, those models usually

adopt open source licences (e.g., Apache or MIT

licenses), which allow users to access the models’

source code to further modify or extend them.

C. Comparison between Model Stores and App Stores

When comparing the elements between the app and

the model stores, we only focus on the elements missing

in either all model stores or in both app stores. Under

the Product Documentation dimension, there are one

unique element in model stores and three unique ele-

ments for app stores.

• The Demo element only exists in ModelDepot and

is missing in all other model stores and app stores.

Compared to mobile apps, which are meant to be

downloaded on mobile devices and hence are harder

to disable after the expiry of the demo, it is much

easier to support model demos as models are meant

to be deployed in a container/server.

• Although ML products require access to various

computing resources (e.g., images/videos/audio),

permission, the list of required computing ser-

vices (e.g., microphone) or data (e.g., calendar), of

models are not explicitly documented. The former

can be derived through trial-and-error, or by skim-

ming through the annotated scripts. The content of

some of the ML products might not be suitable for

certain users (a.k.a., age or language). For ex-

ample, one model in Wolfram is about determining

whether an image contains pornographic content.

Except release notes, all other elements under

the Product Documentation are missing in both app

stores. The difference is mainly due to their different

target audience (software engineers vs. end users). Apps

are products targeted towards the general population, and

hence come with a rich GUI. Furthermore, most of these

apps provide in-app tutorials when users initially launch

them. In contrast, models generally do not come with

a GUI but instead correspond to APIs or components

that require programming in order to integrate them into

an application. Instead of detailed developer documen-

tation, models usually provide sample usage in form of

annotated scripts.

The elements under the Delivery dimension are

completely disjoint, with two elements only present

in model stores, and two only in app stores. Such

differences are mainly because the automated prod-

uct deployment techniques differ between two types

of products: apps installed on the users’ devices (app

stores) or models on the providers’ cloud infrastructure

(model stores). The deployment instructions

and cloud deployment information are provided for

all model stores, while all app stores check compatibility

of apps with the user’s device and allow one-click

purchase/installation of apps.

Although all elements under the Business dimension

exist in both types of stores, the pricing information

is presented differently. For model stores, the pricing

is usually subscription-based or pay-per-use, whereas

mobile apps have a wider range of pricing schemes (e.g.,

entirely free, one-time purchase, and in-app purchase).

The store review policy under the Submission

& Review dimension is missing in model stores. As

more models are being introduced into the stores, such

policies will be needed to protect users and develop-

ers. Similar to the Product Documentation dimension

above, the developer license element is missing

under the Legal Information dimension for app stores.

D. Summary and Implications

• Emerging Practices: Since model stores have been

introduced recently, only 65% of the information

elements are common across the three model stores.

For example, ML model information elements re-

lated to technical details like ML algorithms, type

of training datasets and cloud deployment, are sup-

ported across all three stores. However, some other

elements (e.g., demo or release notes) are only

present in one or two stores. It would be interesting

to study the evolution of the information elements

from the model stores, as they are being used by

more organizations/developers.

• Target Audience: Both model and app stores have

several unique elements. For example, model stores

contain common usage for each ML model whereas

app stores contain age ratings for different apps.

This is mainly due to their different target users:

app stores for end-users and model stores for orga-

nizations/developers.

• Reviewing Policy: Some important elements in app

stores are currently missing in model stores. In

particular, there is no clear policy for submitting

and reviewing ML models before they can ap-

pear in the model stores. The reviewing of ML

models is a very challenging task and requires

further research in the following three areas: (1)

Requirement specification: Models used in different

context (e.g., health care vs. gaming) need different

quality thresholds in order to be usable or safe.

For example, how should the safety requirements

ACCEPTED BY IEEE SOFTWARE 6

for radiology-related prediction models be defined?,

and (2) Automated monitoring mechanisms: To eval-

uate the safety and the correctness of different ML

models under submission, automated monitoring

mechanisms are needed; and (3) Standard quality

measurement: common performance measures of

ML models are needed as indictors of qulity of

service (QoS) to enable users to compare among

similar product offerings.

• Hidden Bias: Each model in the model store

contains three components: the source code, the

training dataset, and the trained model(s). However,

little information is provided regarding the under-

lying data distributions and the steps for data pre-

processing of the training set. Yet such information

is very important in order to identify and remove the

hidden bias in models. For example, the deployed

ML models can perform poorly, if the images used

during training are high resolution images and lower

resolution images taken from mobile phones are

used in production. Further research is needed to

assist organizations/developers to properly identify,

report, and remove such bias in model stores in

order to yield satisfactory performance of ML ap-

plications.

IV. RQ2: HOW UNIQUE ARE THE MODELS PROVIDED

BY EACH MODEL STORE?

Here we seek to investigate whether different model

stores offer their unique offerings of ML models. We first

identify the different types of models in model stores,

then compare them across model stores.

A. Data Extraction

In order to obtain information about all models offered

by the three studied model stores, we first developed

a model store crawler. Since each model store has a

different structure (JSON for AWS, HTML sections

for Wolfram and ModelDepot) and displays its data

differently (typically using Javascript to dynamically

reveal information), we had to write a different crawler

for each store leveraging headless Chrome to obtain

the dynamic store content. Using the manually labeled

information elements used in RQ1, we developed parsers

to automatically extract the sections of each store. In this

RQ, we study the most recent snapshot obtained using

our crawlers at the time of this study (mid March 2019).

B. Quantitative Analysis

Different model stores have different heuristics to

group their models. AWS labels each model using seven

criteria (e.g., input and server location) and each model

can be under multiple criteria. For example, the input

for a computer vision model in AWS can be image(s)

or video(s). The model can be deployed in US East or

Europe.

After manually studying the grouping criteria of each

model store, we decided to group the models based on

their input data domain for the following two reasons: (1)

it is a common criteria among three stores; and (2) each

model can only belong to one input domain. Table II

shows the number of models under each group.

AWS has the largest number of models, followed by

Wolfram, and ModelDepot. AWS is the only model store

with models in all five groups. Neither ModelDepot nor

Wolfram contain any models in structured data,

while this group contains the majority (45%) of AWS

models. The majority of the ModelDepot (75%) and

Wolfram (75%) models are focused on images, which

is the second largest group in AWS (27%). All three

models stores contain only few models in the audio

and video group.

Since RQ1 showed that models in the model stores

provide their technical documentations, we manually

went through each model to track their origin. As

a result, we found that 91% of the Wolfram and 72%

of the ModelDepot models refer to 34 and 20 academic

papers, respectively. One paper/URL may correspond to

multiple ML models even in the same store. For example,

we found two different models in ModelDepot using

the same implementation of one research prototype,

but were trained on two different datasets and used in

two different contexts: gender recognition and emotion

classification. Similar cases also exist in Wolfram. Very

few (4%) models in AWS referenced academic papers,

each of which corresponds to different AWS models.

Seven models in Wolfram and three in ModelDepot do

not contain paper references but GitHub URLs for the

model implementation.

C. Similar Offerings of ML Models

We consider two ML models from different model

stores as similar offerings (a.k.a., similar models), if they

share three information elements in common: ML algo-

rithms, training datasets, and objectives. For example, all

three model stores contain an image classification model

that uses the same algorithm (ResNet50) and training

dataset (Imagenet). Most ML models have such informa-

tion elements in their individual product webpage. Note

that similar ML models may not be exactly identical.

For example, although two similar ML models use the

same ML algorithms, their underlying implementations

ACCEPTED BY IEEE SOFTWARE 7

Table II: The breakdown of ML models under different model

stores. Note that AWS contains 231 URLs, each of which

corresponds to one model. Yet there are three models that

have two URLs for their two different versions. This brings the

number of AWS models to 228. We consider two models from

two different stores as similar offers, when the ML algorithms,

the training dataset(s), and the objective(s) are the same.

Group AWS ModelDepot Wolfram

Image
Count 61 (27%) 24 (75%) 59 (75%)
Similar 2 (0.8%) 6 (19%) 7 (9%)

Video
Count 13 (6%) 2 (6%) 0 (0%)
Similar - - -

Natural Count 35 (15%) 5 (16%) 18 (23%)
language Similar - 1 (3%) 1 (1%)

Audio
Count 12 (5%) 1 (3%) 2 (2%)
Similar - - -

Structured
Count 107 (47%) - -
Similar - - -

Total
Count 228 (100%) 32 (100%) 79 (100%)
Similar 2 (0.8%) 7 (22%) 8 (10%)

can be different. Table II shows the results. there are

only two similar models in AWS to the other two stores,

whereas ModelDepot and Wolfram had seven and eight

common models. Most of the similar ML models were

found under the image group.

D. Summary and Implications

• Product Maturity: More than 70% of the models

from ModelDepot and Wolfram are based on re-

search prototypes. This demonstrates the practical

impact of current AI research, which can be con-

verted into production-ready models in a relatively

short time-frame. It would to be interesting to track

their future development activities of such models to

understand the unique challenges and opportunities

for maintaining and evolving ML models.

• Cross-store Support: The amount of similar mod-

els across different model stores is very small.

This is mainly due to vendor lock-in. Migrating

one model to different stores requires adapting it

to different frameworks, like SageMaker for AWS

and the Wolfram language for Wolfram. Similar to

mobile app stores, cross-platform frameworks for

developing and maintaining ML models are needed.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an exploratory study on ML

model stores. We first empirically compared the infor-

mation elements among three model stores and two app

stores. Since model stores have been introduced fairly

recently, only 65% of the elements are common among

model stores. We found some elements (e.g., cloud

deployment and user instructions) which are unique to

the model stores. Certain elements (e.g., review policy)

which are present in app stores are missing in model

stores. Further studies of the models inside the three

model stores showed very few offerings of the similar

ML models among the model stores, with the majority

of the ML models from Wolfram and ModelDepot orig-

inating from research prototypes. In the future, better

support for effective reviewing of ML models in terms

of safety and quality are needed in model stores. Before

integrating into ML applications, automated methods are

needed to detect, report, and remove hidden bias in pre-

trained ML models.

REFERENCES

[1] AWS Marketplace: Machine Learning & Artificial Intelligence .
https://aws.amazon.com/marketplace/solutions/machinelearning/.
Last accessed: 03/30/2019.

[2] ModelDepot - Open, Transparent Machine Learning for Engi-
neers . https://modeldepot.io/. Last accessed: 03/30/2019.

[3] Nuance AI Marketplace for developers .
https://aimarketplace.portal.azure-api.net/. Last accessed:
03/30/2019.

[4] Wolfram Neural Net Repository of Neural Network Mod-
els . https://resources.wolframcloud.com/NeuralNetRepository/.
Last accessed: 03/30/2019.

[5] Gartner Identifies the Top 10 Strate-
gic Technology Trends for 2019.
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019.
Last accessed: 12/01/2019.

[6] Tensorflow Models & datasets.
https://www.tensorflow.org/resources/models-datasets. Last
accessed: 03/25/2019.

[7] TORCHVISION MODELS. https://pytorch.org/docs/stable/torchvision/models.html.
Last accessed: 12/01/2019.

[8] M. Chui, J. Manyika, M. Miremadi, N. Henke,
R. Chung, P. Nel, and S. Malhotra. Notes from the
AI Frontier Insights from Hundreds of Use Cases.
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning.
Last accessed: 03/25/2019.

[9] S. Jansen and E. Bloemendal. Defining app stores: The role of
curated marketplaces in software ecosystems. In International

Conference of Software Business, pages 195–206. Springer,
2013.

[10] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What do
mobile app users complain about? IEEE Software, 32(3):70–77,
2015.

[11] S. McIlroy, N. Ali, and A. E. Hassan. Fresh apps: an empirical
study of frequently-updated mobile apps in the google play
store. Empirical Software Engineering, 21(3):1346–1370, 2016.

[12] E. Meijer. Behind Every Great Deep Learning Framework is
an Even Greater Programming Languages Concept (Keynote).
In Proceedings of the 2018 26th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2018.

 https://aws.amazon.com/marketplace/solutions/machinelearning/
 https://modeldepot.io/
 https://aimarketplace.portal.azure-api.net/
 https://resources.wolframcloud.com/NeuralNetRepository/
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019
https://www.tensorflow.org/resources/models-datasets
https://pytorch.org/docs/stable/torchvision/models.html
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning

ACCEPTED BY IEEE SOFTWARE 8

[13] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A Distributed Framework for Emerging AI Ap-
plications. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), 2018.
[14] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded Theory

in Software Engineering Research: A Critical Review and

Guidelines. In Proceedings of the 38th International Conference

on Software Engineering (ICSE), 2016.
[15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

Transferable Architectures for Scalable Image Recognition. In
2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018.

	I Introduction
	II Background and Related Work
	II-A App Stores and Model Stores
	II-B Empirical Studies on Mobile App Stores

	III RQ1: What kind of information elements do model stores provide?
	III-A Data Extraction
	III-B Comparison among Model Stores
	III-C Comparison between Model Stores and App Stores
	III-D Summary and Implications

	IV RQ2: How unique are the models provided by each model store?
	IV-A Data Extraction
	IV-B Quantitative Analysis
	IV-C Similar Offerings of ML Models
	IV-D Summary and Implications

	V Conclusions and Future Work
	References

