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ADVANCES IN MACHINE learn-
ing (ML) algorithms and increasing 
availability of computational power 
have resulted in huge investments in 
systems that aspire to exploit artificial 
intelligence (AI), in particular ML. AI-
enabled systems, software-reliant sys-
tems that include data and components 
that implement algorithms mimicking 
learning and problem solving, have in-
herently different characteristics than 
software systems alone.1 However, the 
development and sustainment of such 
systems also have many parallels with 
building, deploying, and sustaining 
software systems. A common observa-
tion is that although software systems 
are deterministic and you can build 
and test to a specification, AI-enabled 
systems, in particular those that include 
ML components, are generally proba-
bilistic. Systems with ML components 
can have a high margin of error due to 
the uncertainty that often follows pre-
dictive algorithms. The margin of error 
can be related to the inability to predict 
the result in advance or the same result 

cannot be reproduced. This character-
istic makes AI-enabled systems hard 
to test and verify.2 Consequently, it is 
easy to assume that what we know 
about designing and reasoning about 
software systems does not immedi-
ately apply in AI engineering. AI-en-
abled systems are software systems. 
The sneaky part about engineering AI 
systems is they are “just like” conven-
tional software systems we can design 
and reason about until they’re not.

I argue that our existing design 
techniques will not only help us make 
progress in understanding how to de-
sign, deploy, and sustain the structure 
and behavior of AI-enabled systems, 
but they are also essential starting 
points. I suggest that what is differ-
ent in AI engineering is, in essence, the 
quality attributes for which we need to 
design and analyze, not necessarily the 
design and engineering techniques we 
rely on. In some respects, the junction 
we are at is no different than when we 
realized security had to be treated as 
a primary quality concern in software 
systems; when we remembered that 
if we do not design for the users and 
architect for usability, systems fail; or 

when privacy concerns started to dom-
inate our discussions. 

Today, security, usability, and pri-
vacy are among the many other main-
stream architectural concerns; we have 
common vocabulary and analysis 
methods to design and check for such 
attributes. Similar progress needs to be 
made in regard to explainability, data 
centricity, verifiability, and change 
propagation at a minimum because 
these attributes are critical in success-
fully designing the structure and be-
havior of AI-enabled systems. There is 
work to be done, but we are not start-
ing from scratch.

Process of Building AI-Enabled 
Systems Is Different
The process of building AI-enabled 
systems does, in fact, differ from 
the process of building software 
systems. Industry teams recognized 
quickly that the role of the data scien-
tist is a critical addition to the software 
engineering teams.3 The development 
of an ML model requires the data sci-
entist to engage in exploratory analysis 
and can require several iterations be-
fore an appropriate model is produced.4 
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Once a model is developed a continu-
ous sustainment and evolution cycle 
is not only necessary; it is inevitable 
for the viability of the system. 

The tasks required to manage AI 
systems that include ML models are 
not always aligned with software de-
velopment tasks. Although continuous 
evolution and iterative development 
are not new to software engineering, 
the uncertainty introduced by the vol-
atility of the data and ML model pre-
dictions is certainly not common. An 
early lesson learned is that a number 
of mismatched assumptions can lead 
to significant failure of the AI-enabled 
system.5 Such failure is often a conse-
quence of disjointed development and 
sustainment processes among the data 
scientists, software engineers, and op-
erations staff. 

Most of the process differences 
between developing AI-enabled sys-
tems and software systems are driven 
by the central role played by data in AI 
systems. Data collection, cleansing, 
management, and continuous up-
dates add additional tasks. Resource 
and execution planning of AI-enabled 
systems, therefore, should take into 
account these tasks. These tasks also 
drive additional roles and responsibili-
ties as well as additional process steps 
that need to be considered during re-
source and execution planning. Those 
who collect, curate, and manage data 
may or may not be part of the respon-
sibilities of the data scientists or soft-
ware engineers. Data science is forging 
its own methods for addressing the 
data centricity of ML development, 
for example the Team Data Science 
Process by Microsoft, but their align-
ment with software engineering pro-
cesses are yet to be put to test.

Software engineers are familiar 
with working with large volumes 
of data as well as all the compliance 
concerns. However, in AI-enabled 

systems, data have multiple facets: data 
are both an enabler and a constraint. 
Resources required for data manage-
ment are often not estimated correctly. 
System elements that interact with data 
in any way (including create, read, up-
date, delete, and store) become key 
system components in the deployed 
system. Moreover, data need to be 
updated continuously, which will im-
pact several architectural concerns for 
the system, including its latency and 
prediction accuracy.

Data scientists and software engi-
neers, respectively, understand the pro-
cess steps of data science and software 
engineering; however, we have yet to 
define what an integrated, well-man-
aged, AI-enabled system develop-
ment process looks like. In particular, 
how data and model evolution impact 
the overall systems sustainability is 
an area where we need to make sig-
nificant progress. Organizations that 
have demonstrated success in apply-
ing AI techniques to their data-driven 
problems automate anything and ev-
erything they can and rely on robust 
infrastructures to allow for managing 
multiple versions of deployed soft-
ware, reverting back as needed. 

These techniques call for a level of 
scale and resource management that 
many organizations are not equipped 
with. Robust infrastructures and auto-
mation frameworks are essential for the 
successful development of AI-enabled 
systems. The availability of infrastruc-
ture, computing resources, and tools 
should be complemented by develop-
ment methods and processes that 
clearly define the new roles and tasks 
that are fit for AI engineering. 

Our Misconceptions 
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The differences in the process of en-
gineering AI-enabled systems do not 
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necessarily translate to contrasts in 
analyzing and designing for such 
systems. Deploying and sustaining 
successful software-reliant systems re-
quire constantly managing competing 
business and architecture tradeoffs. 
These tradeoffs dictate how systems 
are structured as well as how they 
behave and, consequently, can effec-
tively be evolved and sustained.

There are a number of misconcep-
tions we hold for software systems 
that do not include AI components. 
Before we can make progress in im-
proving how we design and analyze 
for AI-enabled systems, we need to 
revisit some of the current misconcep-
tions we have about engineering soft-
ware-reliant systems.

• We can specify systems: A 
significant difference listed for 
AI-enabled systems is that they 
cannot be specified up front, 
whereas software systems can be. 
There are systems whose require-
ments we can and do know up 
front or can easily discover itera-
tively. Those tend to be manage-
ably sized systems that we have 
learned how to develop over the 
years. In reality, many software 
systems, even without AI compo-
nents, struggle with uncertain-
ties and “unknown unknowns” 
throughout their development. 
What changes in engineering 
AI-enabled systems, however, is 
the fact that uncertainty is their 
dominant characteristic. In par-
ticular, learning from data and 
the discovery process introduced 
with ML-modeling activities both 
introduce many uncertainties. AI 
specifications are specifications 
of problems, not systems. 

• System correctness can be veri-
fied: If we cannot specify systems, 
challenges in verifying them, of 

course, are not surprising. There 
are countless examples of failure 
due to mismatched specifications, 
especially between as-designed 
and as-deployed software sys-
tems. Verifying at requirements 
or design time against predefined 
requirements does not suffice to 
safeguard systems from runtime 
failure. Software engineers have 
long sought the quest of developing 
systems that are correct by design. 
Model-based software engineering 
has made progress but not to the 
extent that systems can be mod-
eled end to end, driving improved 
formalism and verification. Veri-
fication challenges are inevitably 
exacerbated in AI-enabled systems 
given their inherent uncertainty.

• We can avoid hidden dependen-
cies: The hard-to-trace dependen-
cies, in particular those induced 
by data dependencies, become 
a significant source of failure in 
ML systems. These hidden de-
pendencies make applicability of 
the known architectural patterns 
to manage system evolution and 
separation of concerns challeng-
ing. Introduced by Google engi-
neers as the Changing Anything 
Changes Everything (CACE) 
principle, systems with ML com-
ponents in particular not only 
become highly coupled but also 
more complex.6 However, the 
reality is that hidden dependen-
cies exist in all systems.7 Hid-
den dependencies have always 
been a challenge to manage, in 
particular runtime dependencies, 
because software engineers lack 
tools to analyze, model, and vi-
sualize these dependencies. Data 
dependencies that are inherent 
in AI-enabled systems suggest 
that we need the tools we already 
lacked even sooner.
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• We can manage system change 
propagation: The implications of 
the CACE principle are that, in 
AI-enabled systems, there is a dire 
need for improving how change 
propagation is managed, both to 
reduce the uncertainty of the ex-
pected results and to improve the 
engineer’s ability to debug systems. 
Software engineering tools and 
techniques still need to make prog-
ress to improve analyzing and safe-
guarding for change propagation. 
The inability to manage change 
propagation leads to technical 
debt, which is also recognized as a 
challenge in AI-enabled systems.7

• Frameworks do it all: Tools that 
help engineers analyze data, experi-
ment with learning algorithms, and 
create initial versions of ML models 
are quickly becoming a commod-
ity. The ability to generate an initial 
model falsely gives the impression 
of having a successful AI applica-
tion prototype. The challenge starts 
when these quick and dirty models 
need to be integrated into deployed, 
functioning systems. Existing frame-
works, model libraries, and toolsets 
do not replace a well-architected 
system that can scale, minimize the 
impact of change propagation, and 
address the AI-enabled system and 
relevant quality attribute concerns 
such as explainability, data centric-
ity, and verifiability.  

• We can build reliable sys-
tems from unreliable and 

unpredictable subcomponents:
We see the challenges of analyz-
ing and designing for reliable 
systems in embedded real-time 
systems that rely on integration 
of many disparate software and 
hardware components, some of 
which may be developed and 
owned by different parties. 
The mismatched assumptions 
propagate to all levels of de-
sign. AI components developed 
independently are yet another 
set of subcomponents  whose 
behavior needs to be reliably 
predicted.  

We are still climbing the 
hype curve in our expec-
tations of what AI can ac-

complish. Objectively analyzing what 
is similar and different in engineering 
such systems will guide how and where 
research can focus on improving de-
signing, analyzing, and verifying AI-
enabled systems. Progress is needed 
in defining new development process 
models for AI engineering. Mean-
while, we need to appreciate that 
the uncertainty introduced by the be-
havior of AI systems is nothing new to 
software systems—we already did not 
know how to manage uncertainty. The 
rush to deploy AI-enabled systems just 
increased the urgency of making prog-
ress on how to model, analyze, and 
safeguard against the inherent uncer-
tainty of our systems. 
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We are still climbing the hype 
curve in our expectations of what 
AI can accomplish.


