
0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E JULY/AUGUST 2020 | IEEE SOFTWARE 3

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

ADVANCES IN MACHINE learn-
ing (ML) algorithms and increasing
availability of computational power
have resulted in huge investments in
systems that aspire to exploit artificial
intelligence (AI), in particular ML. AI-
enabled systems, software-reliant sys-
tems that include data and components
that implement algorithms mimicking
learning and problem solving, have in-
herently different characteristics than
software systems alone.1 However, the
development and sustainment of such
systems also have many parallels with
building, deploying, and sustaining
software systems. A common observa-
tion is that although software systems
are deterministic and you can build
and test to a specification, AI-enabled
systems, in particular those that include
ML components, are generally proba-
bilistic. Systems with ML components
can have a high margin of error due to
the uncertainty that often follows pre-
dictive algorithms. The margin of error
can be related to the inability to predict
the result in advance or the same result

cannot be reproduced. This character-
istic makes AI-enabled systems hard
to test and verify.2 Consequently, it is
easy to assume that what we know
about designing and reasoning about
software systems does not immedi-
ately apply in AI engineering. AI-en-
abled systems are software systems.
The sneaky part about engineering AI
systems is they are “just like” conven-
tional software systems we can design
and reason about until they’re not.

I argue that our existing design
techniques will not only help us make
progress in understanding how to de-
sign, deploy, and sustain the structure
and behavior of AI-enabled systems,
but they are also essential starting
points. I suggest that what is differ-
ent in AI engineering is, in essence, the
quality attributes for which we need to
design and analyze, not necessarily the
design and engineering techniques we
rely on. In some respects, the junction
we are at is no different than when we
realized security had to be treated as
a primary quality concern in software
systems; when we remembered that
if we do not design for the users and
architect for usability, systems fail; or

when privacy concerns started to dom-
inate our discussions.

Today, security, usability, and pri-
vacy are among the many other main-
stream architectural concerns; we have
common vocabulary and analysis
methods to design and check for such
attributes. Similar progress needs to be
made in regard to explainability, data
centricity, verifiability, and change
propagation at a minimum because
these attributes are critical in success-
fully designing the structure and be-
havior of AI-enabled systems. There is
work to be done, but we are not start-
ing from scratch.

Process of Building AI-Enabled
Systems Is Different
The process of building AI-enabled
systems does, in fact, differ from
the process of building software
systems. Industry teams recognized
quickly that the role of the data scien-
tist is a critical addition to the software
engineering teams.3 The development
of an ML model requires the data sci-
entist to engage in exploratory analysis
and can require several iterations be-
fore an appropriate model is produced.4

What Is Really Different
in Engineering
AI-Enabled Systems?
Ipek Ozkaya

Digital Object Identifier 10.1109/MS.2020.2993662
Date of current version: 18 June 2020

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute,
ipek.ozkaya@computer.org

FROM THE EDITOR

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Once a model is developed a continu-
ous sustainment and evolution cycle
is not only necessary; it is inevitable
for the viability of the system.

The tasks required to manage AI
systems that include ML models are
not always aligned with software de-
velopment tasks. Although continuous
evolution and iterative development
are not new to software engineering,
the uncertainty introduced by the vol-
atility of the data and ML model pre-
dictions is certainly not common. An
early lesson learned is that a number
of mismatched assumptions can lead
to significant failure of the AI-enabled
system.5 Such failure is often a conse-
quence of disjointed development and
sustainment processes among the data
scientists, software engineers, and op-
erations staff.

Most of the process differences
between developing AI-enabled sys-
tems and software systems are driven
by the central role played by data in AI
systems. Data collection, cleansing,
management, and continuous up-
dates add additional tasks. Resource
and execution planning of AI-enabled
systems, therefore, should take into
account these tasks. These tasks also
drive additional roles and responsibili-
ties as well as additional process steps
that need to be considered during re-
source and execution planning. Those
who collect, curate, and manage data
may or may not be part of the respon-
sibilities of the data scientists or soft-
ware engineers. Data science is forging
its own methods for addressing the
data centricity of ML development,
for example the Team Data Science
Process by Microsoft, but their align-
ment with software engineering pro-
cesses are yet to be put to test.

Software engineers are familiar
with working with large volumes
of data as well as all the compliance
concerns. However, in AI-enabled

systems, data have multiple facets: data
are both an enabler and a constraint.
Resources required for data manage-
ment are often not estimated correctly.
System elements that interact with data
in any way (including create, read, up-
date, delete, and store) become key
system components in the deployed
system. Moreover, data need to be
updated continuously, which will im-
pact several architectural concerns for
the system, including its latency and
prediction accuracy.

Data scientists and software engi-
neers, respectively, understand the pro-
cess steps of data science and software
engineering; however, we have yet to
define what an integrated, well-man-
aged, AI-enabled system develop-
ment process looks like. In particular,
how data and model evolution impact
the overall systems sustainability is
an area where we need to make sig-
nificant progress. Organizations that
have demonstrated success in apply-
ing AI techniques to their data-driven
problems automate anything and ev-
erything they can and rely on robust
infrastructures to allow for managing
multiple versions of deployed soft-
ware, reverting back as needed.

These techniques call for a level of
scale and resource management that
many organizations are not equipped
with. Robust infrastructures and auto-
mation frameworks are essential for the
successful development of AI-enabled
systems. The availability of infrastruc-
ture, computing resources, and tools
should be complemented by develop-
ment methods and processes that
clearly define the new roles and tasks
that are fit for AI engineering.

Our Misconceptions
Exasperated
by AI Engineering
The differences in the process of en-
gineering AI-enabled systems do not

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

help@computer.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FROM THE EDITOR

 JULY/AUGUST 2020 | IEEE SOFTWARE 5

necessarily translate to contrasts in
analyzing and designing for such
systems. Deploying and sustaining
successful software-reliant systems re-
quire constantly managing competing
business and architecture tradeoffs.
These tradeoffs dictate how systems
are structured as well as how they
behave and, consequently, can effec-
tively be evolved and sustained.

There are a number of misconcep-
tions we hold for software systems
that do not include AI components.
Before we can make progress in im-
proving how we design and analyze
for AI-enabled systems, we need to
revisit some of the current misconcep-
tions we have about engineering soft-
ware-reliant systems.

• We can specify systems: A
significant difference listed for
AI-enabled systems is that they
cannot be specified up front,
whereas software systems can be.
There are systems whose require-
ments we can and do know up
front or can easily discover itera-
tively. Those tend to be manage-
ably sized systems that we have
learned how to develop over the
years. In reality, many software
systems, even without AI compo-
nents, struggle with uncertain-
ties and “unknown unknowns”
throughout their development.
What changes in engineering
AI-enabled systems, however, is
the fact that uncertainty is their
dominant characteristic. In par-
ticular, learning from data and
the discovery process introduced
with ML-modeling activities both
introduce many uncertainties. AI
specifications are specifications
of problems, not systems.

• System correctness can be veri-
fied: If we cannot specify systems,
challenges in verifying them, of

course, are not surprising. There
are countless examples of failure
due to mismatched specifications,
especially between as-designed
and as-deployed software sys-
tems. Verifying at requirements
or design time against predefined
requirements does not suffice to
safeguard systems from runtime
failure. Software engineers have
long sought the quest of developing
systems that are correct by design.
Model-based software engineering
has made progress but not to the
extent that systems can be mod-
eled end to end, driving improved
formalism and verification. Veri-
fication challenges are inevitably
exacerbated in AI-enabled systems
given their inherent uncertainty.

• We can avoid hidden dependen-
cies: The hard-to-trace dependen-
cies, in particular those induced
by data dependencies, become
a significant source of failure in
ML systems. These hidden de-
pendencies make applicability of
the known architectural patterns
to manage system evolution and
separation of concerns challeng-
ing. Introduced by Google engi-
neers as the Changing Anything
Changes Everything (CACE)
principle, systems with ML com-
ponents in particular not only
become highly coupled but also
more complex.6 However, the
reality is that hidden dependen-
cies exist in all systems.7 Hid-
den dependencies have always
been a challenge to manage, in
particular runtime dependencies,
because software engineers lack
tools to analyze, model, and vi-
sualize these dependencies. Data
dependencies that are inherent
in AI-enabled systems suggest
that we need the tools we already
lacked even sooner.

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@
ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@
computer.org
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
Senior Advertising Coordinator: Debbie Sims
IEEE Computer Society Executive Director:
Melissa Russell

CS PUBLICATIONS BOARD
Fabrizio Lombardi (VP of Publications),
Cristiana Bolchini, Javier Bruguera,
Carl K. Chang, Fred Douglis, Charles Hansen,
Shi-Min Hu, Antonio Rubio, Diomidis Spinellis,
Stefano Zanero, Daniel Zeng

CS MAGAZINE OPERATIONS
COMMITTEE
Diomidis Spinellis (Chair), Lorena Barba,
Irena Bojanova, Shu-Ching Chen,
Gerardo Con Diaz, Lizy K. John,
Marc Langheinrich, Torsten Möller, David Nicol,
Ipek Ozkaya, George Pallis, VS Subrahmanian,
Jeffrey Voas

IEEE PUBLICATIONS
OPERATIONS
Senior Director, Publishing Operations:
Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion
and Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2020.2972661

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

• We can manage system change
propagation: The implications of
the CACE principle are that, in
AI-enabled systems, there is a dire
need for improving how change
propagation is managed, both to
reduce the uncertainty of the ex-
pected results and to improve the
engineer’s ability to debug systems.
Software engineering tools and
techniques still need to make prog-
ress to improve analyzing and safe-
guarding for change propagation.
The inability to manage change
propagation leads to technical
debt, which is also recognized as a
challenge in AI-enabled systems.7

• Frameworks do it all: Tools that
help engineers analyze data, experi-
ment with learning algorithms, and
create initial versions of ML models
are quickly becoming a commod-
ity. The ability to generate an initial
model falsely gives the impression
of having a successful AI applica-
tion prototype. The challenge starts
when these quick and dirty models
need to be integrated into deployed,
functioning systems. Existing frame-
works, model libraries, and toolsets
do not replace a well-architected
system that can scale, minimize the
impact of change propagation, and
address the AI-enabled system and
relevant quality attribute concerns
such as explainability, data centric-
ity, and verifiability.

• We can build reliable sys-
tems from unreliable and

unpredictable subcomponents:
We see the challenges of analyz-
ing and designing for reliable
systems in embedded real-time
systems that rely on integration
of many disparate software and
hardware components, some of
which may be developed and
owned by different parties.
The mismatched assumptions
propagate to all levels of de-
sign. AI components developed
independently are yet another
set of subcomponents whose
behavior needs to be reliably
predicted.

We are still climbing the
hype curve in our expec-
tations of what AI can ac-

complish. Objectively analyzing what
is similar and different in engineering
such systems will guide how and where
research can focus on improving de-
signing, analyzing, and verifying AI-
enabled systems. Progress is needed
in defining new development process
models for AI engineering. Mean-
while, we need to appreciate that
the uncertainty introduced by the be-
havior of AI systems is nothing new to
software systems—we already did not
know how to manage uncertainty. The
rush to deploy AI-enabled systems just
increased the urgency of making prog-
ress on how to model, analyze, and
safeguard against the inherent uncer-
tainty of our systems.

Acknowledgments
The ideas I present in this article are
influenced by conversations with
Mary Shaw and many colleagues at
the Software Engineering Institute.

References
1. A. Horneman, A. Mellinger, and

I. Ozkaya, AI Engineering: 11 Founda-

tional Practices. Pittsburgh: Carnegie

Mellon University Software Engineer-

ing Institute, 2019. [Online]. Available:

https://resources.sei.cmu.edu/asset

_files/WhitePaper/2019_019_001

_634648.pdf

2. J. Bosch, I. Crnkovic, and H. H.

Olsson, Engineering AI systems: A

research agenda. 2020. [Online]. Avail-

able: https://arxiv.org/abs/2001.07522.

3. M. Kim, T. Zimmermann, R. De-

Line, and A. Begel, “The emerg-

ing role of data scientists on

software development teams,” in

Proc. ICSE 2016, pp. 96–107. doi:

10.1145/2884781.2884783

4. S. Amershi et al., “Software engineering

for machine learning: A case study,” in

Proc. ICSE (SEIP), 2019, pp. 291–300.

5. G. A. Lewis, S. Bellomo, and A. Gal-

yardt, “Component mismatches are a

critical bottleneck to fielding AI-enabled

systems in the public sector,” presented

at AAAI FSS-19: Artificial Intelligence

in Government and Public Sector, Ar-

lington, VA, 2019. [Online] Available:

https://arxiv.org/abs/1910.06136v1

6. D. Sculley et al., “Hidden technical

debt in machine learning systems,” in

Proc. 28th Int. Conf. Neural Informa-

tion Processing Systems (NIPS’15),

vol. 2, Dec. 2015, pp. 2503–2511.

7. R L. Nord, I Ozkaya, R S. Sangwan,

R J. Koontz, “Architectural depen-

dency analysis to understand rework

costs for safety-critical systems,”

in Proc. 36th Int. Conf. Software

Engineering (ICSE Companion

2014), May 2014 pp. 185194. doi:

10.1145/2591062.2591185.

We are still climbing the hype
curve in our expectations of what
AI can accomplish.

