
110 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 20©2020 I EEE

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

SOFTWARE
ENGINEERING RADIO

Justin Beyer: What is a threat?

Adam Shostack: A promise of future
harm; something that might happen,
often accompanied by a condition
for avoiding the threat. Threat mod-
eling implements mitigations.

What’s the goal of threat modeling,
and how is the goal achieved?

It enables security and engineering
to collaborate and consider threats
that apply to the system, before writ-
ing code. It aims to develop a plan

to solve threats and avoid them when
you ship.

What are its benefits?

It gives a structured, systematic,
comprehensive approach to security.
Structured threat-modeling tech-
niques identify what can go wrong
and provide assurance that you’re
being comprehensive. Organizations
get collaboration, rather than con-
flict, between teams. If you’re not
threat modeling, and engineering
comes to security for advice on secur-
ing the product, security might rec-
ommend late-stage techniques, such
as software-composition analysis,

static analysis, penetration testing,
and fuzzing. But all of these hap-
pen later in the design and develop-
ment of the product and the process.
When design choices get encoded in
the application programming inter-
faces (APIs) and in the distribution
of components, they become hard
to change. Security needs a seat at
the table from the beginning. Threat
modeling diffuses potential conflict.

What kinds of projects benefit from
threat modeling?

Any that include technology. Block-
chain projects tend to have a threat
model either explicitly or implicitly

Adam Shostack
on Threat Modeling
Justin Beyer

From the Editor

Adam Shostack, of Shostack & Associates and author of Threat Modeling: Designing for

Security, discusses threat modeling, its benefits, and how to add it to an organization’s

existing software process. Host Justin Beyer spoke with Shostack about asset-, threat-,

and software-centric approaches; diagramming applications and introducing trust

boundaries; methods such as spoofing, tampering, repudiation, information disclosure,

denial of service, and elevation of privilege as well as the kill chain and the Elevation

of Privilege card game; tooling; bug bars; privacy threats; linkability, identifiability,

nonrepudiation, detectability, disclosure of information, unawareness, and noncompli-

ance; selling threat modeling to an organization; and threat modeling for the Internet

of Things. We provide summary excerpts below; to hear the full interview, visit http://

www.se-radio.net or access our archives via RSS at http://feeds.feedburner.com/

se-radio.—Robert Blumen

Digital Object Identifier 10.1109/MS.2020.3017406
Date of current version: 22 October 2020

SOFTWARE ENGINEERING RADIO

 NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 111

with them. Similarly, Microsoft has
published a guide to threat modeling
with machine learning, and the Ber-
ryville Institute of Machine Learning
also published a guide. Threat model-
ing involves answering four key ques-
tions: what are we working on, what
can go wrong, what are we going to
do about it, and did we do a good job.
An explicit threat model documents
the answers to those questions. An
implicit model is when someone was
told to go think about it, they did,
and they said, “Yeah, we’re good,”
or, “No, I think we need to address
these particular threats.”

Please explain attacker-centric, as-
set-centric, and software-centric ap-
proaches and their advantages and
disadvantages.

In attacker-centric modeling, we
build personas for the people who
could attack us and use them to un-
derstand methods and tactics. This
approach often leads us astray. Us-
ability experts recommend engaging
with personas in their natural envi-
ronments to understand what they
do and why, but you can’t talk to
ransomware authors or spies about
their work. Asset-centric threat
modeling identifies what might be
valuable to attackers, but it is easy to
miss things and waste time on assets
that are out of scope. What we think
is most valuable may not be what is
valuable to attackers. It is best to fo-
cus on what we’re working on: the
software, the technology. Software-
centric threat modeling starts from
what people know, what they’re
comfortable talking about, what we
can scope and understand, what is
within our control.

What are some of the newer meth-
ods of threat modeling?

The newest is the use of a kill chain to
ask what could go wrong. Kill chains
come from the idea that an attacker
must follow a set of steps to break in
successfully. By going through and
thinking about each of those steps
relative to what are we working on,
we can say, “What are the best deliv-
ery points here?” For example, if an
application accepts file uploads, an
attacker could weaponize that capa-
bility to execute files on the system.

What does STRIDE stand for, and
how do you use it?

STRIDE was the first structured ap-
proach to threat modeling, a model
of what can go wrong. It stands for
spoofing, tampering, repudiation
(denying that something happened
or that you’re responsible), infor-
mation disclosure, denial of service,
and elevation of privilege. STRIDE

is a checklist to think through each
piece of software you’re working on:
How could someone spoof them-
selves to this, pretend to be someone
else? How could someone tamper
with it or modify it without my au-
thorization? And so on.

After applying threat modeling, how
do you identify threats that you need
to care about?

First, apply the easy fixes. Treat every-
thing else as part of a backlog. Threat
modeling identifies things on which
we can do risk analysis later. Some-
times we defer to risk analysis, and
sometimes it’s easier just to act. With
risk, there are four steps you can take:
accept risk, transfer it, mitigate it,
and eliminate it. Ignore is not an op-
tion, but accept might be—accept it,
track it, quantify it in some way, and
ask if the risk is appropriate for your

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
 • 423—Host Akshay Manchale speaks with Ryan Singer, head of strategy

at Basecamp, about the mindset and culture behind successful remote
work for engineers.

 • 422—Michael Geers, front-end developer with over a decade experience
in building user interfaces, discusses Micro Frontends with host Kanchan
Shringi.

 • 421—Doug Fawley, tech lead of the golang native implementation of
gRPC at Google, discusses gRPC with host Robert Blumen.

UPCOMING EPISODES
 • Jeroen Willemsen and Sven Schleier talk about mobile application secu-

rity with host Justin Beyer.
 • Matt Lacey discusses Mobile App usability with host Gavin Henry.
 • Host Jeff Doolittle talks with Philip Kiely on writing for software

engineers.

SOFTWARE ENGINEERING RADIO

112 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

seniority within the organization and
for the organization as a whole. It goes
into the backlog so it can be tracked
along with standard bugs. Thinking
about threat modeling as an engineer-
ing discipline that’s designed to pro-
duce problems to be addressed leads
to the most success. Bug bars encapsu-
late what the severity is and who’s al-
lowed to make decisions about it. Bug
bars are well aligned with engineering
at most organizations. With bug bars,
we say that this severity of impact
leads to this level of person needing to
decide about the risk.

Does the threat modeling of new
software change for API-driven soft-
ware, the Internet of Things, con-
tainerized services running Docker,
or some other Kubernetes cluster ex-
ecuting Docker?

It changes the answers to, What are
we working on, what can go wrong,
and what are we going to do about it?
The thing that remains the same across
all of these cases is the four-question
framework. Just get started. Dive in
and threat model; do an analysis. As
you develop skill, you will realize that

the threats to the web API tend to be
like this, the threats to the IoT tend to
be like this, and so on. But if I were to
try to give advice for each of these spe-
cific things, we’d end up with an explo-
sion of variance.

How do I sell the importance of
threat modeling to my organization?

Take a structured approach to secu-
rity and increase collaboration
between security and development.
Getting everyone at a whiteboard
discussing architecture reduces re-
work. Even if you get no security
benefit whatsoever, it gets every-
one into the threat-modeling pro-
cess. Elevation of Privilege is a card
game that helps people threat model
at a whiteboard. The game is built
around STRIDE as a backbone.
You don’t need to know much about
STRIDE to use it. It’s a way of an-
swering, What are we working on,
and what can go wrong? Its gami-
fied nature encourages a free flow of
ideas and perspectives.

ABOUT THE AUTHOR

JUSTIN BEYER is an information security analyst in higher education.

He holds various industry certifications for both defensive and offensive

cybersecurity. Currently, he has interests in a wide variety of topics, such

as software security, software architecture, security operations, identity/

access management, and cryptography. He can be reached at justin@

justinb.dev or on Twitter @jusbeyer.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2020 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

