
Bumps in the Code: Error
Handling during Software
Development
Tamara Lopez
The Open University

Helen Sharp
The Open University

Marian Petre
The Open University

Bashar Nuseibeh
The Open Univeristy
Lero - The Irish Software Research Centre

Abstract—Problems come up during software development all the time. When developers hit these
bumps, situations can be surprising and new, and they must figure out what — if anything — has
gone wrong. Error handling often resolves small, immediate concerns, however, findings from three
ethnographically-informed studies suggest that the way developers experience errors has implications
for professional growth and development. Through these experiences, developers refine ideas,
strengthen collective practice, and learn.

Introduction

How do professional developers fix prob-
lems that come up during software develop-
ment? Research commonly examines how de-
velopers learn to program with tools [1] or
how they undertake tasks like bugfixing [2]
or code maintenance [3]. These studies have
established that many issues have at their
origin one of several common human errors,
including slips-of-action, memory lapses and
more complex mistakes in understanding [1].
When questions come up during development,
developers have been found to gather informa-
tion from tools, but struggle to piece together
answers from responses the systems give [3].
During bugfixing, developers can think code
is wrong that turns out to be correct, a time
intensive, costly side effect of the need to seek

and process information [2]. These articles
examine human error and problem solving
within discrete tasks associated with software
engineering, but do not reveal as much about
the ways in which everyday problems are per-
sonally experienced [4] or socially managed [5]
in professional environments.

Problems in everyday work are actively
experienced — they are bumps that come up
during software development (for an overview
of terminology, see the ”Faults, Bugs and
Bumps” box). These issues require developers,
like workers in other socio-technical environ-
ments [6], to make decisions on the spot. They
must solve problems using available tools and
existing capabilities, and within the circum-
stances surrounding their teams, projects and
organisations. In these cases, individuals must

IEEE Software Published by the IEEE Computer Society © 2020 IEEE 1



Bumps in the Code

balance the need to write good software along-
side their understanding of what is required to
finish tasks and keep work moving [7].

This article presents findings from three
empirical studies that examinined how devel-
opers handle errors. Using qualitative meth-
ods to investigate error from the perspective
of developers, analytical focus in the studies
was redirected from the impact errors have
on software in operation, toward factors that
influence performance of developers.

Faults, Bugs and Bumps

Error in software engineering is
commonly described using terms
like fault or bug. Faults produce
undesirable deviations in software that
is in operation. Bugs are a consequence
of development activity. They have a
presence in code; it is possible to track
them down and remove them. Removal
improves the dependability of software
and reduces the risk of operational
failure [8].

Errors are also actively experienced
by people [9], with effects that can
be felt [10]. In software engineering,
these are bumps that come up
during development. Bumps are
handled through error handling [11],
the problem-solving process people
undertake to recover from human
errors [12] (see also Figure 1). These
issues are ephemeral, and are often
resolved before software is released.

The next section presents an overview of
the methods used to conduct the studies.
Following this, a catalog of representative in-
stances of error handling is given. Factors that
shaped and influenced error handling among
study participants are described. The article
closes with three implications for professional
growth in developers.

METHOD
An examination of human errors requires

naturalistic data that is observable or that
can be reported by the people who experi-

ence them [9]. To consider error from the
perspective of developers, it is necessary to
follow activity forward in time rather than
performing deductive analyses to determine
the causes of negative events [6]. To meet these
aims, a series of three studies were undertaken
to examine the actions developers take after
problems arise. Table 1 provides details about
data that were collected, including the sites,
participants, and data sources.

As in other ethnographically-informed
studies [13], investigations were not exper-
imental or hypothesis-driven. Instead, the
studies observed practice and accounts of
practice in everyday contexts. Collection was
unobtrusive: data were gathered from sources
that included proprietary and participant-
created video, semi-structured interviews and
observation. Studies were designed to consider
development holistically over time, rather
than in terms of discrete engineering tasks
that are commonly associated with faults or
bugs. The account given here provides a rich
narrative of practice, and challenges received
views about the nature and role of human
error in software engineering.

Using theory drawn from psychology [10]
and safety science [6], incidents were isolated
in data across the corpus by identifying verbal
and visual evidence that participants recog-
nised that something was wrong, and that they
subsequently followed a process to remove ef-
fects of the problem. Analyses produced a cat-
alog of error handling incidents observed and
reported in three contexts: during conceptual
design, in work performed at the desk and in
reflection after problems were resolved.

In the following section, three types of
handling are highlighted. Next, a description
is given of factors that were found to influence
handling among study participants.

HOW ERRORS ARE HANDLED
Incidents gathered from each site and con-

text of software development broadly corre-
spond to the error handling process identified
in psychology research as depicted in Figure
1. To summarise: first, a person realises that
a problem has occurred — they hit a bump.
Next, the person must identify what was done

2 IEEE Software



Table 1. Data Corpus

Site (Context), Name, Desc Participants, Role/Edu (Exp) Sources

Site A (Design): The AmberPoint
Design Session
Lab-based, set design task undertaken
by colleagues followed by a brief
interview in which the designers
reflected on the session.

- Bill, design professional (10+)
- Kasia, design professional (10+)

- 1 video recording, 2.5 hours long
- 1 transcription

Site B (Deskwork): Open-Source
Acceptance Test Framework
Publicly available video depictions of
several months of intermittent devel-
opment on an open-source project. In-
depth analysis performed on a one-
month subset of development.

- Joe, agile consultant and engineer
(10+)
- Marcus, agile consultant and engineer
(10+)

- 60 video recordings
- 20 transcriptions
- Blog posts and website information,
social media alerts and photographs,
open-source code archive

Site C (Reflection): Research
Software Engineering
Semi-structured interviews collected
in-situ about a challenge in recent
work.

- Joachim, Computing,Educational
Software (10)
- Evan, Computing postgraduate, GIS
(5)
- Valentin, Computing post- graduate,
Web Media, Financial Industries (11)
- James, Humanities Computing (20+)
- Marisa, Humanities + Postgraduate
computing diploma (3.5)
- Richard, Humanities Computing
(15)

- 7 audio recordings
- 6 transcriptions
- Field notes taken after site visits
- Photographs of work spaces, design
diagrams, email exchanges, snippets of
code

Site D (Reflection): Higher
Education Course Planning

Semi-structured interviews collected
in-situ with three individuals about a
challenge in recent work; 1/2 day team
observation.

- Robert, Computer Science/ Software
Engi- neering; E-commerce; Aviation
(12)
- Dereck, Computing & Accounting;
Media (6)
- Thomas, Degree Unknown, Commer-
cial development (20)

- 4 audio recordings
- 3 transcriptions
- Field notes taken after site visits.
- Drawings, diagrams, email exchanges.

wrong and what should have been done, a
process that has been described within soft-
ware engineering research in terms of hypoth-
esis formation and modification [2]. Recovery
follows when actions are taken that remove
the effects of the error [12] and permit the
task at hand to continue. Within software
development, mitigating actions include mak-
ing changes to code, configurations, technical
environments or other artifacts.

One way to gauge error handling is by how
simply the effects of problems can be removed.
Slips-of-action are common, and though nu-
merous, are typically easy to detect and
straightforward to handle [9]. Other problems
are more difficult and require people to ac-
tively reason within particular situations and
circumstances [10]. Representative examples
of handling that demonstrate different degress
of simplicity are given in the subsections that

follow.
References are used to situate examples

within field sites (e.g., Site A), the context
in which the example was observed or re-
ported (e.g., design, desk work or reflection).
Where appropriate, a pseudonym is given
(e.g., Marisa). These details correspond to
information in Table 1.

Rules-of-Thumb
Problems that were observed in desk work

were, at times, quickly solved using rules-of-
thumb [6]. The circumstances in these situ-
ations are familiar, making it possible for a
person to draw upon a prior experience that
matches the current situation so closely, a fix
can be applied as a “recipe” or rule.

In cases like this, recovery is straightfor-
ward, but ease in handling often only comes
after prior instances in which the same error
was surprising, disruptive or difficult to solve.

September 2020 3



Bumps in the Code

Figure 1. Error handling as defined within human error
studies in psychology (for an overview, see [10]). De-
tection indicates that a person realises that something
is wrong, identification is the process of knowing what
should have been done. Effects are removed in recovery
[12].

Rules-of-thumb are not formalised or man-
dated procedures, but are developed by prac-
titioners. They are cultural and experiential
[6], and can reflect preferred ways of working
[14], or transmission of know-how between
developers:

“So we have a problem there...that
I’ve noticed happens sometimes. If
you actually stop it, now go back to
Eclipse and stop it. And then start
it again...” (Marcus speaking to Joe,
Site B)

Conscious Command
Other problems that were observed and

reported across the sites were novel, “new” to
the developers who encountered them. Novel
issues command attention [9] and require
drawn out, effortful problem solving [10]. Par-
ticipants at Sites C and D described the iden-
tification phase in these cases using terms like
“hacking around”, “trying things” or “trial-
and-error”. In desk work, the pair at Site B
gave verbal indications that they had focused
their attention on a particular error message
given by a tool, and were observed in these
cases to make multiple changes to a single area

of code or piece of configuration.
Within the corpus, many issues that

commanded attention also often required
multiple cycles of detection, identification,
and recovery. Evidence indicated that
this cyclical process was immersive, and
required developers to manage and remember
sequences of actions and outcomes. Valentin
described it as “nested problems”:

“You find something, and then you
find something else related, you find
something related and you are deep
in a tree where you [are] never at
the end and you must come back.”
(Site C)

In these instances, handling was also re-
ported to require effort that stretched beyond
a single programming session, and to involve
local and online social support as depicted in
Figure 2.

Getting Lost
Things can go horribly wrong during error

handling. In instances collected at Sites B,
C and D, handling began in the same way:
an error arose that was unexpected, and the
developers began a process of identification.
However, in these cases, efforts did not remove
the effects of problems. Participants indicated
that they doubted early actions, forgot where
they were within technical environments, or
that they had lost control. Robert explained
the interplay between action and doubt like
this:

“[Y]ou’ll go ‘Oh well that had no
effect’ but you have to be sure...
because sometimes when you are
dealing with web things, something
might have been cached ... maybe
you forgot to save the file, maybe
your change hasn’t been picked up.”
(Site D)

The most severe incidents in the catalog
had simple origins. In one instance, Marcus
and Joe lost track of a file in a complicated
set of directories (Site B). At Site C, Evan
recounted a day in which he had trouble in-

4 IEEE Software



Figure 2. Instances of error handling often span multiple days. Within this process, developers seek support from
team members and online.

stalling dependencies for an application frame-
work. Dereck described hours spent trying to
recover from a slip committed while copying
a service to a production server (Site D). In
all of these cases, the findings reflect human
error research more generally [10]: novices and
experts can get lost, and when they do, they
exhibit similar, ineffective behavior. As Evan
put it:

“My approach was kind of attrition.
The list wasn’t appearing, which was
annoying and confusing. I’d installed
it before without having this issue. I
had to try and work out what was
happening.” (Site C)

THE SHAPE OF ERROR HANDLING
In contrast to the model presented in Fig-

ure 1, error handling can be lengthy, cyclical
and complex. As Evan’s description exempli-
fies, handling takes a shape that is unique to
an individual’s experience and bound to the
particular situations in which problems arise.
It is influenced by a number of qualitative
features including emotion and passing time,
depicted in Figure 3 and described in the
paragraphs that follow.

In the midst of handling, participants gave

indications that feelings helped them expand
and constrain activity. Joachim avoided taking
responsibility for improper event handling in a
webpage with blame, commenting “It must be
a memory handling issue in the browser!” (Site
C). Dereck initially deflected responsibility for
a service he brought down saying “I’ve checked
everything on my side...Maybe they’ve broken
it on their end” (Site D). Feelings also in-
formed decision making in broader terms. For
example, Valentin described rejecting alterna-
tive solutions on the basis that they were “very
ugly”, something to be used only as a “last
resort” (Site C).

Participants in the design session and at
the desk expressed surprise and disappoint-
ment when changes did not produce a fix. In a
similar way, participants reported feeling stuck
in the midst of complex or difficult issues (see
also Figure 2), that they were “poking around
in the dark” (Evan, Site C). When recovery
was perceived to be successful, designers and
developers from every site gave verbal indica-
tions that they were satisfied. However, three
other points related to recovery should be
noted:

Recovery is not serendipitous. Insight
was often described by developers at Sites

September 2020 5



Bumps in the Code

Figure 3. Factors that give an individual shape to error handling in software development. Handling is an iterative,
cyclical process, moderated by emotion and passing time.

C and D as being sudden or serendipitous.
This was not supported in the data. Instead,
analysis of interviews and video data from Site
B suggest that insight, and by extension recov-
ery from issues is achieved through outcomes
of problem solving that are perceived to be
timely — the combination at one point of
accrued knowledge, information, memory and
assesment.

Recovery does not equal resolution.
In all three contexts, instances were exam-
ined that were not resolved. This happened
in several cases in which participants got lost,
and problem solving was aborted or failed.
However, recovery was also deferred. After the
fact, Valentin reported that he tolerated mul-
tiple manifestations of an error and employed
temporary solutions for over a year to gain
time for problem solving (Site C). Within the
design session between Kasia and Bill (Site A),
deferral was evident in verbal exchanges that
included the use of fluid terminology, ques-
tionning, circling back, and uneven capture in
diagrams (for an example, see Figure 4).

Recovery is positive and negative. Bad
feelings linger after handling. Even though
things worked out in the end, Dereck felt
down on himself for bringing a service down

and for leaving it broken overnight (Site D).
Evan completed his tasks, but considered the
incident to be a personal failure. He was aware
that the code he wrote was “pretty dirty” (Site
C). However, participants also viewed their
experiences positively. Evan reported that his
incident helped him understand that “I need
to write cleaner code” (Site C). Dereck noted
that going forward, “[W]e are just going to re-
architect into a single solution” (Site D). After
his incident, Joachim released an open source
application programming interface (API), re-
marking “I thought there ought to be a way
for others to use this code” (Site C).

BUMPS IN THE CODE — IT IS THE
JOURNEY THAT COUNTS

The path developers take to finished soft-
ware is bumpy. Though error handling often
manages small, immediate concerns, findings
in these studies suggest that the way develop-
ers experience errors has three broader impli-
cations for professional growth and develop-
ment.

Errors reveal cracks in ideas. Concep-
tual issues thread through development prac-
tice. Most prominent within the design session
(Site A), evidence suggests that similar errors

6 IEEE Software



Figure 4. Drawn from the design session (Site A), this photo detail shows evidence of incomplete recovery. Unlike
other parts of the specification, this area was not diagrammed but comprised a list of questions.

of understanding also occur within coding ses-
sions (Site B) or when tasks are handed be-
tween team members (Site D, Thomas). Gen-
erally detected through unsatisfactory expla-
nations, examples of “thought errors” [11] were
found in every case to be managed through
conversation, and were often temporarily set
to the side when participants reached verbal
consensus.

However, these issues can indicate that a
developer does not yet understand what needs
to be done in a design or implementation [11].
They are signals that an idea doesn’t hold up
over time, or transfer from one area of the code
to another. This kind of error tends to reoccur,
and to be sneaky, apparent to one person, but
hidden to another. Marcus and Joe provided
an example of this at the desk, in which a
piece of wiki syntax looked “okay” to Joe, but
was clearly wrong to Marcus. Joe was right,
the syntax was correct, but Marcus knew that
the markup did not properly reflect a website’s
information architecture.

Errors strengthen collective practice.
Just as social activity underpins bug fixing
[5], social support underpins error handling.
In this corpus, support was reported to come
from colleagues, in-house documentation, and
commercial and social media sites on the in-
ternet. All forms of support were valued. De-
velopers reported at Sites C and D that they
relied on the expertise of colleagues, shared
information and asked each other for help.
However, multiple participants also explained
that information shared by developers on the
internet, however partial and scattered, made
their own work easier and smoother.

Findings also indicate that growth is fos-
tered during error handling through trusting,
open connections between colleagues. At the
desk, Marcus and Joe committed the same
error three times in sessions that spanned
a week [14]. The pair were not observed to
outwardly penalise each other in any of the
instances. Gentle treatment of one another
was also evident in a case when a mistaken
idea resulted in code that had to be reverted,
and in a severe incident in which one of the
pair got lost and needed help implementing
code using a difficult API.

Errors give developers space. Bugs be-
long to development process, to management,
and to users, but errors and error handling
belong to developers. Though they place con-
straints on progress within the development
lifecycle, errors give developers freedom to
manage tasks. Evan described relying on er-
rors that came up during software installation
to direct his process (Site C). In the same
way, Marcus and Joe left code in a failed state
as a pointer for picking up work at a later
time (Site B). Rather than push through to a
fix, Kasia and Bill simplified their design task
by saving a conceptual problem for “the next
version” (Site A).

Opportunity to informally learn [15] is,
perhaps, the greatest benefit of error handling.
Developers across the contexts displayed an
awareness that recovery from difficult prob-
lems pushed them beyond the limits of their
understanding and experience. Valentin de-
scribed letting his problem persist as a strate-
gic choice he made to buy time to learn about
client priorities and to find the best solution

September 2020 7



Bumps in the Code

(Site C). As Robert explained, finding solu-
tions online is relatively easy (Site D). Under-
standing how to fit them to local conditions is
when the hard part really begins.

CONCLUSION
Developers bump into problems when they

stand together at the whiteboard, when they
write or make changes to code, when they
use libraries and configure application frame-
works. Though faults are problematic when
software is deployed, the qualitative studies
reported here show that human error is an in-
tegral part of software development. Through
error handling, developers grow as profession-
als, becoming more capable and competent as
they confront and refine their ideas, deepen
connections with one another, and learn.

ACKNOWLEDGMENT
We thank the developers who informed this

work. We also thank the reviewers of this
paper for their careful reading and generous
insights. This research was financially sup-
ported in part by the EPSRC (UK), and the
Science Foundation Ireland.

REFERENCES
1. A. Ko and B. Myers, “A framework and methodology for

studying the causes of software errors in programming
systems,” Journal of Visual Languages & Computing,
vol. 16, no. 1, pp. 41–84, 2005.

2. J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rec-
tor, and S. D. Fleming, “How programmers debug,
revisited: An information foraging theory perspective,”
Software Engineering, IEEE Transactions on, vol. 39,
no. 2, pp. 197–215, 2013.

3. J. Sillito, G. C. Murphy, and K. De Volder, “Asking and
answering questions during a programming change task,”
Software Engineering, IEEE Transactions on, vol. 34,
no. 4, pp. 434–451, 2008.

4. M. Eisenstadt, “My hairiest bug war stories,” Communi-
cations of the ACM, vol. 40, no. 4, pp. 30–37, 1997.

5. J. Aranda and G. Venolia, “The secret life of bugs: Going
past the errors and omissions in software repositories,”
in Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 298–308.

6. J. Rasmussen, “The role of error in organizing be-
haviour,” Ergonomics, vol. 33, no. 10-11, pp. 1185–1199,
1990.

7. D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett,
I. Kwan, A. Z. Henley, J. Macbeth, C. Hill, and A. Hor-
vath, “To fix or to learn? how production bias affects
developers’ information foraging during debugging,” in
2015 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2015, pp. 11–20.

8. A. Avižienis, J.-C. Laprie, and B. Randell, “Dependability
and its threats: A taxonomy,” in Building the Information
Society, ser. IFIP International Federation for Information
Processing, R. Jacquart, Ed. Springer Boston, 2004, vol.
156, pp. 91–120.

9. D. Norman, “Categorization of action slips.” Psychologi-
cal review, vol. 88, no. 1, pp. 1–15, 1981.

10. J. Reason, Human Error. New York: Cambridge
University Press, 1990.

11. D. A. Hofmann and M. Frese, Errors in organizations.
Routledge, 2011.

12. A. J. Sellen, “Detection of everyday errors,” Applied
Psychology, vol. 43, no. 4, pp. 475–498, 1994.

13. H. Robinson, J. Segal, and H. Sharp, “Ethnographically-
informed empirical studies of software practice,” Informa-
tion and Software Technology, vol. 49, no. 6, pp. 540 –
551, 2007, qualitative Software Engineering Research.

14. T. Lopez, M. Petre, and B. Nuseibeh, “Examining active
error in software development,” in 2016 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2016, pp. 152–156.

15. M. Eraut, “Informal learning in the workplace,” Studies
in continuing education, vol. 26, no. 2, pp. 247–273,
2004.

Tamara Lopez is a post-doctoral research associate
at the Open University. Her research examines human
factors of professional software development including
error, security and resilience. Lopez completed her PhD
at the Open University in 2016. Prior to this, she worked
as a research software engineer in the digital humanities
at King’s College London and Indiana University. She
can be contacted at: tamara.lopez@open.ac.uk

Helen Sharp is Professor of Software Engineering
at the Open University, UK. Her research investigates
professional software practice with a focus on human
and social aspects of software development. Sharp stud-
ied at University College London as an undergraduate
in Mathematics and as a postgraduate in Computer
Science. She is a chartered engineer and serves on
the Advisory Board for IEEE Software. She can be

8 IEEE Software



contacted at helen.sharp@open.ac.uk

Marian Petre is a professor of computing at The Open
University, UK, and a visiting distinguished professor at
University of California, Irvine, US. Her research focuses
on empirical studies of expert software developers. Petre
received her PhD in computer science from UCL. She
is an Associate Editor of IEEE Software. Contact her at
m.petre@open.ac.uk.

Bashar Nuseibeh is Professor of Computing at the
OU, a Professor of Software Engineering at Lero – The
Irish Software Research Centre, and a Visiting Professor
at UCL and the National Institute of Informatics (NII),
Japan,. His research is multi-disciplinary, underpinned
by an interest in software and requirements engineering,
security and privacy, and adaptive systems. He holds a
Royal Society-Wolfson Merit Award. He can be con-
tacted at: bashar.nuseibeh@open.ac.uk

September 2020 9


	METHOD
	HOW ERRORS ARE HANDLED
	Rules-of-Thumb
	Conscious Command
	Getting Lost

	THE SHAPE OF ERROR HANDLING
	BUMPS IN THE CODE — IT IS THE JOURNEY THAT COUNTS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Tamara Lopez
	Helen Sharp
	Marian Petre
	Bashar Nuseibeh


