
0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E MAY/JUNE 2021 | IEEE SOFTWARE 121

Extracting Requirements
and Modeling
Information and
Controlling Risk
Jeffrey C. Carver, Silvia Abrahão, and Birgit Penzenstadler

THE “PRACTITIONERS’ DIGEST”
department in this issue of IEEE
Software includes papers from the
2020 IEEE Conference on Require-
ments Engineering and the ACM/
IEEE 23rd International Confer-
ence on Model Driven Engineering
Languages and Systems (MODELS
2020). Feedback or suggestions are
welcome. In addition, if you try or
adopt any of the practices included
in this article, please send me and
the authors of the paper(s) a note
about your experiences.

Data-Driven Risk Management
“Data-Driven Risk Management for
Requirements Engineering: An Auto-
mated Approach Based on Bayesian
Networks” by Wiesweg and col-
leagues1 addresses one of the most
important requirements engineering
activities: controlling risk. This activ-
ity is particularly difficult for junior
team members and for those who

are new to requirements engineer-
ing. The paper describes an approach
that automatically predicts the most
likely risks for a given requirements
engineering project. The authors
provided a web-based prototype to
accompany their paper that will pres-
ent a customized list of Top-N risks
relevant for the project based upon
user-supplied project characteristics.
The tool builds the prediction using
a series of Bayesian Networks that
model relationships among require-
ments engineering problems, their
causes, and their effects. These mod-
els can be used for postmortem anal-
ysis, to diagnose probable causes of
suboptimal requirements engineer-
ing performance, or for predictive
analysis, to identify issues that might
arise. The tool learns the relation-
ships based on the experiences of al-
most 500 practitioners with varying
backgrounds from across the world.
To assess the validity of the tool,
the authors 1) compare the outputs
of the tool with the assessment of a
requirements engineering expert for

a specific project, 2) examine how
the expert assesses the usefulness of
the tool and the style of the presen-
tation, and 3) identify the contexts
in which the expert would use the
tool. Out of 10 reported problems,
the tool agreed with the expert on
the causes for seven of them. The ex-
pert rated the tool’s usefulness to be
high because the ranked predictions
with probabilities would be useful
input for group discussions. There
are three primary uses for the tool:
1) in traditional projects, the tool
provides input into discussion to im-
prove the development process; 2) in
agile teams, the tool provides input
to improve the retrospective; and 3)
in teams with inexperienced require-
ments engineers, the tool highlights
low-hanging fruit for process im-
provement. The authors are working
to make the tool generally available
online with a questionnaire for anon-
ymous user feedback. This paper ap-
pears in the 2020 IEEE Conference
on Requirements Engineering. Access
it at http://bit.ly/PD-2021-May-01.

Digital Object Identifier 10.1109/MS.2021.3056989
Date of current version: 16 April 2021

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

PRACTITIONERS’ DIGEST

122 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Human Value Analysis
“Continual Human Value Analysis
in Software Development: A Goal
Model Based Approach” by Harsha
Perera and colleagues2 addresses the
challenges of looking at human values
in software. The underlying concept is
that software developers embed their
values into the systems they create,
either consciously or unconsciously.
As Grady Booch3 stated, every line
of code has a moral and ethical im-
plication. While it is easy to say that
software rules the world, it is much
harder to accept the related respon-
sibility that comes with developing

software systems. This difficulty oc-
curs not only in systems used to de-
termine actions in warfare or whether
someone goes to jail, but also for so-
cial network algorithms that influence
self-worth (especially of teenagers), or
for news sites that influence how peo-
ple treat others based on underlying
biases. This paper examines the chal-
lenges of operationalizing human val-
ues in software, particularly, the lack
of dedicated techniques to integrate
human values, mechanisms to trace
them, and metrics to measure them.
The authors define a framework that
includes four components: 1) identi-
fying the values of stakeholders, 2)
developing an initial feature model,
3) value-brainstorming iterations, and
4) measuring the values of the levels

of satisfaction of stakeholders at each
development level by tracking and as-
sessing requirements and design deci-
sions. The framework embodies social
science concepts without requiring the
users to fully understand them. The
authors also developed a tabular rep-
resentation of the reasoning chains
from design choices to human values,
which eases the applicability of goal
models in an agile context. Finally,
the paper describes a case study of
an emergency alarm system for the
elderly to illustrate the feasibility of
their framework. This paper appears
in the Proceedings of the International

Conference on Requirements Engi-
neering 2020. Access it at http://bit
.ly/PD-2021-May-02.

Extracting Acceptance
Criteria From Natural
Language
“Leveraging Natural-Language Re-
quirements for Deriving Better Ac-
ceptance Criteria From Models” by
Veizaga and colleagues4 describes an
approach to improving (semi-) formal
requirements engineering processes
by combining natural language re-
quirement statements, UML models,
and the automated generation of ac-
ceptance criteria. This new approach
processes natural language state-
ments to enrich the UML models to
improve the quality of the generated

acceptance criteria. The model-based
derivation of system test-acceptance
criteria is particularly useful for com-
plex systems that have a large number
of requirements or for systems that
have frequently evolving requirements.

This approach automatically ex-
tracts information about acceptance
criteria from the natural language
requirements and helps modelers en-
rich their UML models with it. The
authors define 13 information-ex-
traction rules for natural language
requirements, written in the Rimay
language, along with corresponding
recommendations on how to enrich
the UML models based on those rules.
Finally, they use an existing technique
for deriving acceptance criteria from
the model, which they had enriched
with the information extracted from
the natural language requirements.
The process is fully automated except
for the analysts’ approval or rejection
of the recommendations.

The authors conducted an indus-
trial case study (from the financial do-
main) to evaluate the new approach.
The results show that a group of five
domain experts found most of the
recommended enrichments relevant
to the acceptance criteria but missing
from the original UML model (con-
structed without the new approach).
In addition, the experts could not pin-
point any additional information in
the natural language requirements,
relevant to the acceptance criteria,
that the new approach did not iden-
tify. This paper appears in the Practice
and Innovation Track of MODELS
2020. Access this paper at http://bit
.ly/PD-2021-May-03.

Deployment of Edge
Computing Applications
“Model-Based Fleet Deployment of
Edge Computing Applications” by
Song and colleagues5 describes their

While it is easy to say that software
rules the world, it is much harder to
accept the related responsibility that
comes with developing software
systems.

PRACTITIONERS’ DIGEST

MAY/JUNE 2021 | IEEE SOFTWARE 123

joint research with a smart health-
care application provider on a model-
based approach for automatically
assigning multiple software deploy-
ments to hundreds of edge computing
devices. When using DevOps, soft-
ware developers need to continuously
add new features to software which
may be running both on the cloud
and at the edge. An edge computing
application comprises tens to thou-
sands of distributed and heteroge-
neous edge devices, which the authors
refer to as a device fleet. A practical
challenge is figuring out how to au-
tomatically deploy updated software
after each DevOps iteration to the
distributed edge devices while satis-
fying the device’s constraints (that is,
hardware capacity, user preferences,
and network connection) and system
requirements.

This paper describes an approach
that leverages model-based engineer-
ing and constraint-solving tech-
niques to automat ica l ly deploy
multiple software variants on many
edge computing devices in an accu-
rate and efficient way. The approach
was implemented, integrated into a
DevOps toolchain, and tested in a
real-world environment for a health-
care company, using state-of-the-art
Microsoft technologies (Azure Inter-
net of Things Edge and Z3 solver).
The results of the industrial case
study show that the approach is able
to generate correct deployment as-
signments, automate key DevOps
activities, and increase development
productivity. While the approach is
specific to the deployment problem
faced by the health-care company,
the authors are generalizing it to be
used across multiple edge applica-
tion providers. This paper appears in
the Practice and Innovation Track of
MODELS 2020. Access this paper at
http://bit.ly/PD-2021-May-04.

Live Modeling From Natural
Language
“From Text to Visual BPMN Process
Models: Design and Evaluation” by
Ivanchikj and colleagues6 describes
BPMN Sketch Miner, an online tool
for quickly creating Business Process
Model and Notation (BPMN) mod-
els in real time based on notes taken
in constrained natural language.
The authors identify two contexts
in which the tool could be useful:
1) to facilitate communication and
knowledge sharing between domain
experts and business analysts when
performing requirements gathering
and 2) to facilitate learning BPMN
and process modeling in classrooms.

The main featu re of BPM N
Sketch Miner is its textual domain-
specific language for entering a

textual description of a process. The
tool then transforms the textual de-
scription into a diagram (which is
compliant with the BPMN visual
syntax) while the user is typing/en-
tering the information. The paper
describes the design decisions be-
hind the live modeling environment.
First, the domain-specific language
supports a large subset of BPMN el-
ements while using a limited number
of textual constructs that are easy
to learn and remember. Second, be-
cause the monolithic structure of the
textual syntax makes it difficult to
represent control flow graph struc-
tures in BPMN models, the authors
use a process-mining algorithm to
reconstruct a process-control flow
graph model from a set of sequen-
tial execution traces written in plain

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JEFFREY C. CARVER is a professor in the University of Alabama’s

Department of Computer Science, Tuscaloosa, Alabama, 35487,

USA. Further information about him can be found at http://carver

.cs.ua.edu. Contact him at carver@cs.ua.edu.

SILVIA ABRAHÃO is an associate professor at Universitat Politèc-

nica de València, Valencia, 46022, Spain. Further information about

her can be found at http://sabrahao.wixsite.com/dsic-upv. Contact

her at sabrahao@dsic.upv.es.

BIRGIT PENZENSTADLER is an assistant professor at Chalmers

University of Technology and the University of Gothenburg, Gothen-

burg, 412 96, Sweden. Further information about her can be found

at https://www.chalmers.se/en/Staff/Pages/birgit.aspx. Contact her

at birgitp@chalmers.se.

PRACTITIONERS’ DIGEST

124 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

text. The resulting sketch can be ex-
ported for refinement in other stan-
dard-compliant BPMN editors.

To evaluate BPMN Sketch Miner,
the authors surveyed industry ana-
lysts well-skilled in the BPMN lan-
guage. They also conducted a user
study with M.Sc. students who had
no prior knowledge of BPMN. The
results show that business analysts
appreciated the usability of BPMN
Sketch Miner and the expressive-
ness of the domain-specific lan-
guage (in terms of supported BPMN
constructs) and that BPMN Sketch
Miner successfully helps BPMN be-
ginners quickly and accurately model
a nontrivial process. This paper ap-
pears in the Practice and Innovation
Track of MODELS 2020. Access it at
http://bit.ly/PD-2021-May-05. The
BPMN Sketch Miner tool is available
at http://bit.ly/PD-2021-May-06.

Model-Driven Test Schedule
Generation
“Automating Test Schedule Genera-
tion With Domain-Specific Languages:
A Configurable, Model-Driven Ap-
proach” by Anjorin and colleagues7
addresses the optimization of test
scheduling tasks, especially those re-
quiring humans, which are often error-
prone and time-consuming activities.
The paper focuses on the optimization
of a highly configurable test schedule
process in a company that develops
software and hardware solutions for
mechatronic control systems. Their
challenge is figuring out how to fully
automate a test schedule strategy that
can be understandable and config-
ured by domain experts without prior
knowledge of the solution domain.

To address this problem, this pa-
per describes an approach that com-
bines model-driven engineering and
linear programming techniques. The

new approach first generates valid
candidate schedules with the help of a
Triple Graph Grammars tool, which
provides a domain-specific lan-
guage to help test managers config-
ure test schedules in a high-level and
rule-based manner. The approach
then uses an integer linear program-
ming solver to identify the optimal
schedules. This approach has been
deployed and is being used at the
company. To evaluate the approach,
the authors examined the test sched-
ule generator in terms of resource us-
age, task distribution by priority and
risk, and performance. They also
gathered qualitative and quantitative
data from the use of the approach in
a production setting, working closely
with a test manager. The authors also
compared the test schedules gener-
ated by the approach to manually
created test schedules. Overall, the
results show that the approach pro-
duces test schedules of good quality,
reduces the effort required to create
and maintain the schedules, and can
be well-understood and used by the
test manager. This paper appears in
the Practice and Innovation Track of
MODELS 2020. Access it at http://bit
.ly/PD-2021-May-07.

References
1. F. Wiesweg, A. Vogelsang, and D.

Mendez, “Data-driven risk manage-

ment for requirements engineering:

An automated approach based on

Bayesian networks,” in Proc.

2020 IEEE 28th Int. Require.

Eng. Conf. (RE), Zurich,

Switzerland, pp. 125–135.

doi: 10.1109/RE48521.202c0.

00024.

2. H. Perera, G. Mussbacher, W. Hus-

sain, R. Ara Shams, A. Nurwidy-

antoro, and J. Whittle, “Continual

human value analysis in software

development: A goal model based

approach,” in Proc. 2020 IEEE 28th

Int. Require. Eng. Conf. (RE), Zu-

rich, Switzerland, pp. 192–203. doi:

10.1109/RE48521.2020.00030.

3. G. Booch, “The future of software

engineering (SEIP Keynote),” in Proc.

2015 IEEE/ACM 37th Int. Conf.

Software Engineering, Florence, Italy,

vol. 2, pp. 3-3, May 16–24, 2015.

doi: 10.1109/ICSE.2015.128.

4. A. Veizaga, M. Alferez, D. Torre,

M. Sabetzadeh, L. Briand, and E.

Pitskhelauri, “Leveraging natural-

language requirements for deriving

better acceptance criteria from mod-

els,” in Proc. 23rd ACM/IEEE

Int. Conf. Model Driven Eng.

Lang. Syst. (MODELS ’20), New

York, Oct. 2020, pp. 218–228.

doi: 10.1145/3365438.3410953.

5. H. Song, R. Dautov, N. Ferry, A.

Solberg, and F. Fleury, “Model-

based fleet deployment of edge

computing applications,” in Proc.

23rd ACM/IEEE Int. Conf.

Model Driven Eng. Languages

Syst. (MODELS ’20), New York,

Oct. 2020, pp. 132–142. doi:

10.1145/3365438.3410951.

6. A. Ivanchikj, S. Serbout, and C.

Pautasso, “From text to visual BPMN

process models: Design and evalua-

tion,” in Proc. 23rd ACM/IEEE

Int. Conf. Model Driven Eng.

Lang. Syst. (MODELS ’20), New

York, Oct. 2020, pp. 229–239.

doi: 10.1145/3365438.341090.

7. A. Anjorin, N. Weidmann, R. Op-

permann, L. Fritsche, and A. Schürr,

“Automating test schedule generation

with domain-specific languages: A

configurable, model-driven ap-

proach,” in Proc. 23rd ACM/IEEE

Int. Conf. Model Driven Eng.

Lang. Syst. (MODELS ’20), New

York, Oct. 2020, pp. 320–331.

doi: 10.1145/3365438.3410991.

