
142 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

Editor: Robert Blumen
SalesForce
robert@robertblumen.com

SOFTWARE
ENGINEERING RADIO

Priyanka Raghavan: Why is it okay
to ship software with bugs?

 James Smith: Although you should
reduce bugs as much as possible be-
fore you ship, it’s a tradeoff. To be
competitive, you might want to de-
liver features or products to custom-
ers more quickly. Most importantly,
you can’t fully prevent bugs: you
can’t test every single experience
customers have.

Do you see more bugs in certain
languages?

Yes. JavaScript 100%. It’s easy to use
and is a lot of people’s first language.
Many junior developers pick it up
and introduce bugs. It’s important

to understand the fundamentals of
typing even in a language like JavaS-
cript, where it’s magically typed be-
hind the scenes.

Will a particular type of architecture
or design pattern have more bugs?

The smaller the scope of your project
and the better the contracts between
your project and others, the less likely
it is to have complicated, confusing
bugs. This has been highlighted by
the rise of microservices architec-
tures. When an app does one thing
and owns the data, you can antici-
pate problems that could arise more
easily because you’re not trying to
map a complex state machine in your
head. Microservices with contracts
between services and applications
force you to document and think
about the relationship between these

applications and about errors that
could occur and cause the contract
with other services to break down.

The contrary, interactive user in-
terfaces, are most likely to have bugs.
You’re building something that people
interact with in different, sometimes
unanticipated, ways. Also, there’s a
ton of asynchronous code running.
Most of your code in a UI, web,
desktop, or mobile app is running in
callbacks, waiting for someone to
interact with your application. An
exception in a callback doesn’t kill
execution for the rest of the applica-
tion, it just causes that callback to
fail. So for the customer, the whole
application keeps working, but just
your callback or your click handler
might break.

How do you handle bugs coming
from third-party libraries?

James Smith on Software
Bugs and Quality
Priyanka Raghavan

Digital Object Identifier 10.1109/MS.2021.3058704
Date of current version: 16 April 2021

From the Editor

James Smith of Bugsnag discusses software bugs and quality. Host Priyanka

Raghavan spoke with Smith on topics including causes, types, and history of bugs;

user experience and environments causing different bugs; and measuring, bench-

marking, and fixing bugs based on data. We provide summary excerpts below; to

hear the full interview, visit http://www.se-radio.net or access our archives via RSS

at http://feeds.feedburner.com/se-radio.—Robert Blumen

SOFTWARE ENGINEERING RADIO

 MAY/JUNE 2021 | IEEE SOFTWARE 143

Fortunately, most people are using
open source third-party libraries
these days. You shouldn’t have bugs
in third-party code, but you will.
If it’s open source, at least you can
go and dig into it. If you’re using an
error-reporting, error-monitoring
solution, it will show you the stack
trace, the line of code that caused the
crash, and all of the other code paths
that the customer went through be-
fore the crash.

You shouldn’t live on the bleeding
edge. It’s exciting to get hot new fea-
tures, but you shouldn’t immediately
bump your dependencies as soon as
something new comes out in beta.
Selection of third-party libraries is
an underrated part of software de-
velopment. If you rely on something,
you need to trust it, so researching
third-party libraries and SDKs is
critical and underrated.

Can some classes of bugs be found
only by actual users in the field?

Huge teams used to work for months
on QA going through QA scripts.
The more we’ve gotten to lean, agile,
rapid iteration, and being able to hot
fix and patch things and compo-
nentize software, the faster we can
ship. You can’t now have a team of
humans do two months of QA.

The left-hand side of software
development has been replaced with
what Capital One calls “team qual-
ity engineering”—trying to automate
that as much as possible. From the
right-hand side, you have data-driven
instrumentation, with products that
will tell you, “This is a problem, this
is how many customers it affected,
and this is how you fix it.”

Bugs exist in the hands of cus-
tomers, where data representing that
user has gotten into a strange state.
Preproduction and precustomer testing

include unit and integration tests and
cleanroom environments. But in real-
ity, customers run software in a dirty
environment because it needs to do
things such as save state, cache, and
authenticate the customer.

Most bugs are not due to code
paths being missed, because there is
usually good code coverage in testing.
Most are about weird data structures
and unclean data coming through. The
problems that happen in the hands
of your customers come from caching,
authentication, cookies, local storage,
and stuff that’s stored on the device that
is not in the format you expect.

Is it okay to delegate fighting bugs
to our clients who paid money for
software?

I think “test in production” is the
wrong way of thinking about things.
You have to be intentional about

tradeoffs. We want to use tooling
and technology to remediate bugs as
quickly as possible. If resources are
scarce, as they always are, fix the
bugs that matter the most. That will
vary by company and product.

You care most about bugs that
affect key customers or that are
happening in an important flow,
such as login or payments. If it’s a
consumer mobile application that
doesn’t have people spending a lot
of money, focus your time on bugs
affecting the highest volume of cus-
tomers. Whatever metric you use,
be thoughtful about it, and use data
to drive it. Then you can deliver
software that’s as stable as if you
did a two-month QA process, and
in fact improve it and get features
to market more quickly.

There are great tools out there
that support a data-driven approach
to prioritizing and fixing bugs. But

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
 • 446—Nigel Poulton, author of The Kubernetes Book and Docker Deep

Dive, discusses Kubernetes fundamentals, why Kubernetes is gaining so
much momentum, and why it’s considered “the” Cloud OS with host Gavin
Henry.

 • 445—Host Justin Beyer spoke with Thomas Graf, cofounder of Cilium, to
discuss eBPF and how it can be leveraged to improve kernel-level visibility.

 • 444—Host Akshay and Tug Grall of Redis Labs discusses Redis, its evolu-
tion over the years, and the emerging use cases today.

UPCOMING EPISODES
 • Host Adam Conrad talks with Dan Moore about build versus buy.
 • Luke Kysow discusses service mesh with host Priyanka Raghavan.
 • Host Jeremy Jung talks with Scott Hanselman about the Microsoft .NET

framework.

SOFTWARE ENGINEERING RADIO

144 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

even if you do this yourself, don’t
wait for customers to complain. By
the time customers have complained,
probably 50 other customers have al-
ready abandoned your product.

How do you use a stability score?

We want to understand what per-
centage of user interactions with
your product are good or have

failed. We will detect if there are
unhandled exceptions, unhandled
promise rejections, or exceptions
in a callback. Or you may be us-
ing a framework that detects errors
that cross an error boundary. So we
build these hooks to failure states in
your product.

These will cause your custom-
ers to have a bad experience. We
don’t magically stop bugs from
happening, but we detect when
they do happen. That a l l then
feeds into the stability score. If
one of those scenarios happens
in your session, that counts as
a failed session. The underly ing
concept is, I want to know which
customers, what percentage of
the customer base, had a positive
experience.

ABOUT THE AUTHOR

PRIYANKA RAGHAVAN is a security architect at Maersk, Bangalore,

560077, India, where she makes day-to-day architectural decisions

between security and usability or performance. She has more than 15

years in the software industry playing various roles from developer,

team lead, software architect, and now security architect across three

continents. She can be reached on Twitter @Priyankarags. Further

information about her can be found at https://www.linkedin.com/in/

priyanka-raghavan-6a1a405/. Contact her at priyankaraghavan@

gmail.com.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2021 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

