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FEATURE: MACHINE LEARNING APPLIED TO CODE

ARTIFICIAL INTELLIGENCE (AI) 
and, more specifically, the machine 
learning (ML) subarea of AI, has had a 
transformative impact on almost every 
major industry today, ranging from 
retail, to pharmaceuticals, to finance. 
Not surprisingly, it is beginning to 
transform the software development 
industry as well, though significant 
potential remains untapped.

The underlying basis for the 
transformative impact of ML is the 
vast amount of data that are avail-
able to be analyzed and mined, from 
which clever ML algorithms can ex-
tract patterns and insights. In soft-
ware engineering, one of the most 
easily accessible data are source code 
itself. For example, GitHub hosts 
millions of projects, which, together, 
add up to billions of lines of code; 
most companies have large proprie-
tary code repositories as well. Other 

examples of sources of data include 
the following:

• incremental changes between 
repository versions of code

• a large number of tests and their 
outcomes during continuous 
integration

• online forums, such as Stack 
Overflow, in which developers 
interact with each other.

What are some of the useful in-
sights to be extracted from these data? 
How can we use ML to extract those 
insights? Since software engineering 
is a lot about developer productivity, 
in the rest of this introduction, we 
give several examples of scenarios in 
which we have used ML to help de-
velopers work more efficiently; in 
later sections, we give technical de-
tails of how these tools work. Toward 
the end of the article, we present a 
broader picture of additional ways in 
which ML-based insights can help in 
software engineering.

Code Search Using 
Natural Language
Consider the life of a developer who 
has to implement a function, for ex-
ample, for hiding the Android soft 
keyboard programmatically. One 
way to tackle this problem is to 
study Android application program-
ming interfaces (APIs) and then im-
plement the function, but APIs may 
take a long time to comprehend. It 
would be much more efficient to de-
rive inspiration from existing code 
that serves a related purpose. One 
way to find a relevant code snip-
pet is with a quick search on Stack 
Overflow. However, if the question 
is not already answered on Stack 
Overflow, posting a new question 
and waiting for a response has a 
long latency.

AI in Software 
Engineering 
at Facebook
Johannes Bader, Sonia Seohyun Kim,  Frank  Sifei Luan,
Satish Chandra, and Erik Meijer, Facebook, Inc.

// How can artificial intelligence help 

software engineers better do their jobs 

and advance the state of the practice? 

We describe three productivity tools that 

learn patterns from software artifacts: 

code search using natural language, code 

recommendation, and automatic bug fixing.  //

Digital Object Identifier 10.1109/MS.2021.3061664
Date of current version: 23 February 2021

AI in Software Engineering

©SHUTTERSTOCK/ALEX GONTAR



JULY/AUGUST 2021 |  IEEE SOFTWARE 53

On the other hand, copious amounts 
of relevant Android code are avail-
able on GitHub. The problem is that 
it is hard to find such relevant snippets 
directly from a collection of reposito-
ries. We have created a technique that 
can help retrieve a pertinent code snip-
pet directly from source code, starting 
with just rough keywords. While the 
search does not come with the expla-
nation that a Stack Overflow post has, 
it retrieves potentially useful informa-
tion in real time.

Code Recommendation
Even when one does have a start on 
which APIs to use for a certain task 
at hand, the task is not done. When 
writing code, developers are curi-
ous about how other programmers 
have written similar code, to get re-
assured or discover considerations 
they might have missed. If they di-
rectly search on a large code corpus 
for an API name, they might get 
tens of thousands of results. What 
they instead want is a small set of 
sample usages from the repository 
that gives them some additional 
information.

Consider an example usage of an 
Android API method decodeStream:

Bitmap bitmap = BitmapFactory.
decodeStream(input);

However, if one were to look at 
related code elsewhere in the reposi-
tory, one variation is to make sure the 
app does not crash on an exception:

try {
Bitmap bitmap = BitmapFactory.decode

  Stream(input); …
} catch (IOException e) {…}

This is a different search scenario 
that we call code recommendation. 
The input is a code snippet, and the 

output is a small list of related code 
fragments that show only a few rep-
resentative variations of information 
that occur commonly enough. We will 
discuss our approach to building such 
a code recommendation engine in the 
“Code Recommendation” section.

Automatically Fixing 
Routine Bugs
Code evolves constantly. At Face-
book, the Android app repository 
alone sees thousands of commits per 
week. Since many of these commits 
are fixes to various issues, we can use 
ML to figure out the patterns to these 
fixes and automatically suggest an ap-
propriate fix.

More specifically, we have found 
that fixes to static analysis warn-
ings often come from a large pal-
ette of code patterns. The following 
shows an example fix (inserted code 
in green) of Infer’s warning on po-
tential NullPointerException (NPE) 
(null dereferences) in Java:

if (this.lazyProvider == null || shouldSkip) {
return false;

}
Provider p = this.lazyProvider.get();

The notable point is that devel-
opers have a strong preference for a 
certain way to fix a warning, even 

though there might exist alternate, 
semantically equivalent ways. A tool 
that recommends fixes must sug-
gest the one that the developer finds 
natural in a given context. We will 
talk about a tool that discovers and 
learns bug-fixing patterns from data.

Takeaways
These are just some of the many initia-
tives we have started and incorporated 
into practice at Facebook. Additional 
work includes predictive regression 
test selection,1 triaging for crashes,2

and code autocompletion. Our F8 pre-
sentation3 demonstrates how these 
tools are integrated into the Facebook 
development environment. 

Our thesis is that even simple ML 
methods can help remove a lot of inef-
ficiencies in the day-to-day life of a de-
veloper. No longer should they spend 
a lot of time looking for information 
over a repository, finding relevant 
information from hundreds of code 
fragments, or fixing simple, predict-
able bugs manually. In the next sec-
tion, we describe technical details for 
the three topics we have introduced.

Code Search

Background
The ability to search over large 
code corpora can be a powerful 

When writing code, developers 
are curious about how other 

programmers have written similar 
code, to get reassured or discover 

considerations they might have 
missed.
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productivity booster. Therefore, 
we have explored ways to search 
directly over the provided code 
corpora using basic natural lan-
guage processing and information-
retrieval techniques.

There have been previous works 
in code search, such as CoCaBu4

(a code-search tool that augments 
natural language queries by adding 
correlated code vocabulary from 
Internet forums) and Sourcerer5

(a code-search framework that 
searches over open source projects 
available on the Internet). However, 
these tools are not applicable for in-
ternal use since most of our devel-
opers work with proprietary APIs 
and frameworks, which are rarely 
discussed on the Internet. 

Thus, we came up with an ap-
proach to directly search over the 
given corpus. Our tool, called neu-
ral code search (NCS),6 aims to 
find relevant code snippet examples 
given a query in natural language.

How Does It Work?
NCS is built using the idea of em-
beddings, which are vector rep-
resentations of code that aim to 
capture the intent of a piece of 
code in a form suitable for ML. 
Our hypothesis is that the tokens 
in source code are generally mean-
ingful, and embeddings derived 
from these tokens can capture the 
intent of the code snippet well 
enough for a code search. NCS 
creates embeddings at the granu-
larity of a method body.

As shown in Figure 1, NCS 
works in the following steps.

Extract Information. NCS first ex-
tracts relevant tokens from source 
code to create a “natural lan-
guage” document. The informa-
tion NCS extracts includes method 
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names, comments, class names, and 
string literals.

Build Word Embeddings . NCS then builds 
word embeddings using FastText,7

which gives vector representations 
for each word in the corpus. Similar 
to Word2Vec,8 FastText performs un-
supervised training such that words 
appearing in similar contexts have 
similar vector representations. For 
example, the embedding of button
is the closest with the embeddings of 
click, popup, and dismissible when 
trained on an Android code corpus.

Build Document Embeddings . Finally, 
to create a document embedding for 
each method body in the corpus, 
NCS computes a weighted average 
from its tokenized words and its re-
spective word embeddings, as shown 
in (1), where d is a set of words in a 
document, C is the corpus containing 
all documents, and u is a normalizing 
function. This document embedding 
serves to capture the overall seman-
tic meaning of the method body. 
NCS weights the words using term 
frequency–inverse document fre-
quency (TF-IDF) (2), a well-known 
weighting technique in information 
retrieval. The top portion of Figure 1
shows the NCS model training part.

w d Cu u v tfidf , ,vd w
w d

$=
!
a ^ ^h hk|  (1)

,
,log

log
w d C

w d
C w C

1
tfidf , ,

df
tf
$

=
+^ ^

^h hh
h . (2)

Search Retrieval. Upon receiving a 
search query, NCS tokenizes the 
query and uses the same trained word 
embeddings to represent it as a vec-
tor. It is important to note that the 
tokenization will turn the natural 
language query to a series of main 
keywords that captures the essence 
of the query. For example, the query 

“How to get the ActionBar height?” 
will be tokenized to “get action bar 
height.” NCS then compares this vec-
tor to the document embeddings, as 
discussed previously. NCS ranks the 
document embeddings by cosine sim-
ilarity using Facebook AI Similarity 
Search,9 a standard similarity search 
algorithm that operates on high-di-
mensional data, and returns the top 

results. The bottom portion of Fig-
ure 1 shows the search retrieval part.

Evaluation
We evaluated the effectiveness of NCS 
on a set of Stack Overflow questions, 
with the post title as the query and a 
code snippet from the accepted answer 
as the desired code answer. Given a 
query, we measured whether NCS 
was able to retrieve a correct answer 
from a large search corpus (GitHub 
repositories). Out of 287 questions, 
NCS correctly answered 98 questions 
in the top 10 results. This evaluation 
data set, along with the search corpus, 
is publicly available from Li et al.10

Some examples of Stack Over-
flow questions that NCS answers 
well are as follows:

• “How to delete a whole folder 
and content?”

• “How to convert an image into 
Base64 string?”

• “How to get the ActionBar height?”
• “How to find MAC ad-

dress of an Android device 
programmatically?”

Sachdev et al.6 include more details 
on the training and evaluation of NCS. 
We further investigated whether deep 
learning models lead to better code-
search results.11

Developer Feedback
The usage of NCS at Facebook was 
somewhat different from the way we 
had envisioned it. Developers did not 
often write Stack Overflow-style ques-
tions; instead, they mostly searched 
with keyword queries, such as “con-
tract number amount.” Although the 
raw query types were different, with 
the tokenization step where we break 
down both code snippets and the que-
ries into keywords, we were able to 
deploy NCS with no adaptations to 
the model at Facebook. 

At Facebook, NCS is integrated 
into the main code-search tools (e.g., 
the website and IDE) as a complement 
to the existing exact-match code-
search capabilities. Initially, the NCS 
results and the exact-match (grep-like) 
results were shown together. Some-
times, though, developers were look-
ing only for exact matches and got 
confused by the interleaving of 
results. Consequently, exact-match 

NCS is built using the idea of 
embeddings, which are vector 

representations of code that aim 
to capture the intent of a piece of 

code in a form suitable for ML.
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results (from the raw queries) 
were shown separately from 
the NCS results (from the to-
kenized queries).

Code 
Recommendation

Background
NCS answers the first question 
that every developer has—how 
do I do something?—by enabling 
natural language search directly 
over a large code corpus. Using 
NCS, a developer can find this 
API for writing code to load a 
bitmap image:

Bitmap bitmap = BitmapFactory.decode
Stream(input);

However, real-world coding 
does not end here. This line of 
code, if written and deployed, can 
run on millions of devices in a 
variety of different environments. 
The developer needs to make 
sure that the code will not crash 
on people’s phones. Often, this 
would mean adding additional 
code for a safety check, error han-
dling, and so on. In other words, 
the developer has a new question: 
is there anything else to add?

Since there are millions of 
open source repositories avail-
able, it is highly likely that, given 
a particular task, some code al-
ready exists somewhere doing it. 
The challenge is, given a query 
code snippet and a large code 
corpus, how to find similar code 
and offer concise, idiomatic cod-
ing patterns to developers.

There exist many coding as-
sistant tools that differ in their 
design and model: API recom-
menders suggest APIs given a 
coding context, but they do not 
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provide usage examples to help with 
integration. API documentation tools 
provide helpful usage templates, 
but these are limited to API queries 
rather than arbitrary code snippets. 
Code-to-code search engines return 
exhaustive code matches, whereas our 
goal is to provide concise recommen-
dations by clustering together similar 
results. Aroma is able to overcome all 
of these shortcomings.

How Does Aroma Work?
Aroma indexes the code corpus by 
creating sparse vector representations 
of each method body. To do so, it first 
parses the source code to get a simpli-
fied parse tree. Aroma uses this repre-
sentation because it allows the rest of 
the algorithm to be language agnostic.

Aroma then extracts features (pre-
sented in Figure 2) from the parse tree 
to capture the code structure and se-
mantics. Aroma creates the feature 
set of a code snippet by aggregating 
the features of all tokens in that code 
snippet. After obtaining the vocabu-
lary of all features, Aroma assigns a 
unique index to each feature, then con-
verts the feature set to a sparse vector. 
Given a query code snippet, Aroma 
runs the following phases to create 
recommendations.

Feature-Based Search. Aroma takes 
the query code snippet and creates a 
vector representation using the same 
steps in indexing. It then computes 
a list of top (e.g., 1,000) candidate 
methods that have the most overlap 
with the query. This computation 
is very efficient by utilizing parallel 
sparse matrix multiplication.

Clustering. Aroma then clusters to-
gether similar-looking method bodies. 
Instead of showing similar or dupli-
cate code, we want to create a single, 
idiomatic code recommendation from 

them. Aroma performs a fine-grained 
analysis on the candidate methods 
and finds clusters based on similarities 
among the method bodies.

Intersecting. The final step is to create 
one code recommendation for each 
cluster of method bodies. The inter-
secting algorithm works by taking 
the first code snippet as the “base” 
code and then iteratively pruning it 
with respect to every other method in 
the cluster. Its goal is to return only 
the common coding idiom among the 
cluster, by removing extraneous lines 
that may be just situational in a spe-

cific method. Refer to our paper12 for 
full algorithm details.

As a concrete example, suppose 
the following two code snippets are 
in one cluster and that the first one is 
the “base” code snippet:

//Base snippet
InputStream is =…;
final BitmapFactory.Options options = new

BitmapFactory.Options();
options.inSampleSize = 2;
Bitmap bmp = BitmapFactory.decodeStream
 (is, null, options);
ImageView imageView =…;

//2nd snippet
BitmapFactory.Options options = new Bitmap

Factory.Options();
wh ile (…) {

options.inSampleSize = 2;
options.inJustDecodeBounds =…
bi tmap = BitmapFactory.decodeStream(in, 

null, options);
}

Both snippets contain a few lines 
of similar code but also different 
lines specific to themselves. Aroma’s 
intersection algorithm compares the 
base snippet with the second snippet, 
keeping only the lines that are com-
mon in both. It then compares these 
lines with the next method body. 
The remaining lines are returned as 
a code recommendation:

//A code recommendation
final BitmapFactory.Options options = new

BitmapFactory.Options();
options.inSampleSize = 2;
Bitmap bmp = BitmapFactory.decodeStream
 (is, null, options);

Other code recommendations are 
created from other clusters in the 
same way. Aroma’s algorithm en-
sures that these recommendations 
are substantially different from one 
another, so developers can learn a 
diverse range of coding patterns.

Results
We instantiated Aroma on a large 
code corpus of Android GitHub 
repositories and performed Aroma 
searches with code snippets chosen 

Code-to-code search engines 
return exhaustive code matches, 

whereas our goal is to provide 
concise recommendations by 

clustering together similar results.
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from the 500 most popular Stack 
Overflow questions with the An-
droid tag. We observed that Aroma 
provided useful recommendations 
for a majority of these snippets. 
Moreover, when we used half of the 
snippet as the query, Aroma exactly 
recommended the second half of the 
code snippet in 37 out of 50 cases.

Developer Feedback
At Facebook, Aroma is integrated 
into the Visual Studio Code IDE. The 
developer selects a portion of code to 
be used as a query, and, in response, 
Aroma presents a set of code rec-
ommendations. From Aroma’s feed-
back workgroups, this integration 
received mixed feedback: developers 
were unsure about the use case. Is it 
a “teacher” to show better code? Is it 
warning about potential code duplica-
tion? In the end, developers were most 
interested in seeing examples of API 
usage. We have since developed a new 
tool for generating code examples13 to 
address this need.

Bug Fixing

Background
Large code repositories also come 
with a long history of commits (i.e., 
code changes), recording how the 
code base evolved into its current 
state. If we can find repetitive pat-
terns using ML among these changes, 
then we can automate the routine 
work that engineers repetitively do. 
At Facebook, we have found that one 
common class of repetitive changes 
encompasses bug fixes. Therefore, 
we built a tool called Getafix, which 
learns bug-fixing patterns and auto-
matically offers fix suggestions.

Getafix has goals similar to those 
of existing automated program repair 
techniques, but it fills a previously unoc-
cupied spot in the design space: single/

few shot prediction of natural-looking 
fixes, but for specific kinds of bugs. In 
contrast to generate-and-validate ap-
proaches,14 we focus on learning pat-
terns from past fixes for specific bug 
types and leverage information known 
about bug instances (e.g., blamed vari-
able). Getafix does not attempt to find 
generic solutions from any sort of in-
gredient space or by generically mutat-
ing the code. It tends to produce actual, 
human-like fixes by construction, as it 
takes nothing but past human fixes as 
inspiration.

How Does It Work?
For clarity, we focus on a specific 
type of bug that can crash Android 
apps: Java NPE. The following code 
snippet shows an example of an NPE 
and a possible fix: 

public int getWidth() {
@Nullable View v = this.getView();
 return v.getWidth(); //Bug: NPE if v is null 
 return v !=null ? v.getWidth() : 0; 
}
At Facebook, we use the Infer15

static analyzer to detect and warn 
about potential NPEs (the line high-
lighted in red). From the Infer records, 
we identify commits that fix the po-
tential NPE (the line highlighted in 
green). We scrape hundreds of such 
bug-fixing commits from the version 
history and use them as training data 
for Getafix.

Edit Extraction. To find repetitive pat-
terns of bug fixes (“fix patterns”) 
from these training data, Getafix 
splits commits into fine-grained ab-
stract syntax tree (AST) edits. Ge-
tafix first parses each file touched 
by a commit into a pair of ASTs: 
one for the source code before the 
changes made, and ano ther for af-
ter the change. Getafix then ap-
plies a tree differencing algorithm 

similar to GumTree16 to each pair 
of ASTs to predict the edits (inser-
tions, deletions, moves, or updates) 
that likely represent the difference. 
For the example fix described, Ge-
tafix will extract the following edit: 
v.getWidth() " v !=null? v.getWidth(): 0.

Clustering. Getafix takes a data-driven 
approach, called antiunification, by 
clustering the set of AST edits yielded 
by the previous step by similarity: it 
merges the most similar pair of ed-
its in the set into a new edit pattern, 
abstracting away details only where 
necessary. An example follows:

Edit A: v.getWidth() " v!=null 
? v.getWidth(): 0
Edit B: lst.size() " lst!=null 
? lst.size():  0
Antiunification: a.b() " a!=null 
? a.b():   0

Antiunification has the desirable 
property of merging edit patterns 
in the most information-preserving 
way possible. Getafix repeats this 
step as often as possible, putting the 
resulting edit pattern back into the 
set in place of its constituents, hence 
reducing the size of the set and al-
lowing edit patterns to be merged 
and abstracted even further. This 
process results in a hierarchy of edit 
patterns, with the original edits as 
leaf nodes and increasingly abstract 
edit patterns closer to the roots.

Fix Prediction. With s uch a hierarchy of 
fix patterns for NPE warnings, Getafix 
can automatically fix future warnings: 
when Infer produces a new, previously 
unseen NPE warning, Getafix re-
trieves all patterns that are applicable 
from our hierarchy of fix patterns. It 
then applies those candidate patterns 
to the code, generating candidate fixes, 
which are ranked statistically using 
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a metric comparable to TF-IDF. To 
limit computational cost, one or, at 
most, a few of the top-ranked candi-
date patterns are then validated (e.g., 
by running Infer and making sure the 
warning disappeared). 

The best passing candidate fix 
is offered to the engineer as a sug-
gestion he or she can accept or 
reject at the click of a button. Ge-
tafix suggests only one fix to limit 
the cognitive load and provide a 
straightforward user experience. We 
do require a final human confirma-
tion since Getafix uses statistical 
learning and ranking techniques, 
so there is no formal guarantee of 
correctness despite certain forms of 
validation. For more details about 
Getafix, refer to Bader et al.17

Results
Of the Infer NPE warnings fixed by 
Facebook engineers since the Geta-
fix service was rolled out, 42% were 
fixed by accepting our fix sugges-
tion, and, in 9% of the cases, engi-
neers wrote a semantically identical 
fix (which goes to show that develop-
ers are very particular about the fix 
suggestions they accept). Note that 
our pattern-learning phase takes any 
set of changes as input, so a different 
scenario we have successfully started 
automating is the discovery and ap-
plication of “lint” rules. Changes 
made in response to code review are 
often fixes to common antipatterns 
that were pointed out by a reviewer, 
and finding and fixing these antipat-
terns can be baked into a lint rule.

Developer Feedback
We show fix suggestions for warn-
ings during code review and in the 
IDE wherever possible. We found 
that warnings that came with a fix 
suggestion were more actionable and 
addressed (whether via accepting the 

suggested fix or hand-writing one) 
more often than plain warnings. In-
dividual reactions ranged from ig-
noring our suggestions to expressing 
excitement about their level of sophis-
tication in internal feedback groups.

We found that semantic equiva-
lence is insufficient to our engi-
neers and that syntactic differences 
do matter to them: for instance, we 
sometimes predict using a ternary 
conditional and, in several cases, ob-
served developers adopt this fix but 
negating the condition and swapping 
the “then” and “else” expressions. At 
this point, the “accept with one click” 
experience we provide is ineffective, 
so we strive to suggest natural-looking 
fixes exactly as our engineers expect, 
so syntax and even details like idiom-
atic white space must be human-like. 
Our ML-based approach learns pat-
terns that look natural by construc-
tion (learned from real fixes) and also 
learns how to rank among them in a 
principled way, which would be stren-
uous to replicate manually.

The Big Picture
We now take a step back to discuss 
how these ML-based techniques fit 

in the broader picture of the soft-
ware development process. In fact, 
these techniques have the potential 
to influence not just writing or fix-
ing code but almost all stages of the 
software lifecycle.

Figure 3 shows a way to think about 
modern software development, as 
organized in three stages, recurring 
in a cycle (not depicted). The work-
flow begins with an individual devel-
oper’s work, which involves editing 
the code to implement new func-
tionality, or in response to an issue 
and making sure the code compiles 
and passes at least some lightweight 
quality control (e.g., linters or unit 
tests). Next is the team stage: once 
the developer is satisfied with a code 
change he or she is making, it is sent 
in for code review, and, perhaps si-
multaneously, more extensive testing 
and verification are kicked off. Ei-
ther of these can require the jumping 
back into the individual workflow.

Once code gets released and enters 
production, new issues can arise that 
were not caught by previous stages. 
The process must account for how 
such issues are tracked. The produc-
tion stage would typically also include 

Edit Build
Test and
Debug

Code
Review

Continuous
Integration

Release

Production Issue
Tracking

Troubleshooting

Individual

Production

Team

FIGURE 3. The common workflows in software development.
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some telemetry that helps with bug 
isolation. Feedback from production 
kicks off a new cycle, starting again 
from the individual stage.

The previous sections talked about 
concepts that are primarily applicable 
in the code-editing phase of the indi-
vidual workflow. In addition to those 
ideas, the most visible developer-facing 
use of ML in the code-editing phase is 
autocomplete, which has been widely 
studied and deployed. More ambi-
tiously, ML techniques can also help 
developers complete code via program 
synthesis. 

Significant opportunities exist in 
the other states—for example, we had 
previously mentioned our own work 
on predictive regression test selection1

and triaging crashes2—but a detailed 
discussion of these is outside the scope 
of this brief article. Here, in our view, 
are some of the most promising but 
relatively untapped opportunities for 
using ML pertinent to aspects of the 
team and production states.

• Code review: Code review, while 
widely regarded as essential for 
maintaining software quality, is 
also a significant time commit-
ment for software engineers. ML 
techniques can help automate rou-
tine code reviews (such as format-
ting and best coding practices). 
More ambitiously, perhaps ML 
can also automatically resolve a 
routine code-review comment.

• Assessing the risk of a code 
change: In principle, any code 
change increases the riskiness of 
an application. Arguably, the en-
tire testing and verification pipe-
line exists essentially to reduce 
this risk. Can we design ML-
based techniques that provide a 
quantitative assessment of the risk 
of a code change, complementing 
the usual testing and verification 
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pipeline? Advances here will im-
pact both testing (by prioritizing 
tests related to riskier changes) 
and release management (by 
carrying out additional quality 
control for riskier code releases). 
By comparison, techniques for 
assessing the impact of a change 
(e.g., Reb et al.18) take a binary 
view of affectedness and, due to 
the limitations of static analysis, 
often would be overly pessimistic 
in their assessment.

• Troubleshooting: For widely 
deployed applications, custom-
ers send their feedback implic-
itly (telemetry or crashes) and, 
sometimes, explicitly by sending 
comments. The volume of this 
feedback can be huge. This is 
another area where ML can help 
in multiple ways: not only in tri-
aging these reports, but clustering 
them to identify common issues, 
finding important clues from 
telemetry logs and code changes 
that could be connected to the 
 issue at hand.

W ith renewed interest in 
ML and an emerging 
uniformity of software 

development processes (common re-
positories as well as continuous inte-
gration and release), industry is ripe 
for absorbing these ideas into the 
mainstream. At Facebook, we cer-
tainly are transforming our develop-
ment process to be as data driven as 
possible. 
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