
52 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y
T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s

A t t r i b u t i o n - N o n C o m m e r c i a l - N o D e r i v a t i v e s 4 . 0 L i c e n s e .
F o r m o r e i n f o r m a t i o n , s e e h t t p s : //c r e a t i v e c o m m o n s .o r g /

l i c e n s e s / b y - n c - n d /4 . 0 /.

FEATURE: MACHINE LEARNING APPLIED TO CODE

ARTIFICIAL INTELLIGENCE (AI)
and, more specifically, the machine
learning (ML) subarea of AI, has had a
transformative impact on almost every
major industry today, ranging from
retail, to pharmaceuticals, to finance.
Not surprisingly, it is beginning to
transform the software development
industry as well, though significant
potential remains untapped.

The underlying basis for the
transformative impact of ML is the
vast amount of data that are avail-
able to be analyzed and mined, from
which clever ML algorithms can ex-
tract patterns and insights. In soft-
ware engineering, one of the most
easily accessible data are source code
itself. For example, GitHub hosts
millions of projects, which, together,
add up to billions of lines of code;
most companies have large proprie-
tary code repositories as well. Other

examples of sources of data include
the following:

• incremental changes between
repository versions of code

• a large number of tests and their
outcomes during continuous
integration

• online forums, such as Stack
Overflow, in which developers
interact with each other.

What are some of the useful in-
sights to be extracted from these data?
How can we use ML to extract those
insights? Since software engineering
is a lot about developer productivity,
in the rest of this introduction, we
give several examples of scenarios in
which we have used ML to help de-
velopers work more efficiently; in
later sections, we give technical de-
tails of how these tools work. Toward
the end of the article, we present a
broader picture of additional ways in
which ML-based insights can help in
software engineering.

Code Search Using
Natural Language
Consider the life of a developer who
has to implement a function, for ex-
ample, for hiding the Android soft
keyboard programmatically. One
way to tackle this problem is to
study Android application program-
ming interfaces (APIs) and then im-
plement the function, but APIs may
take a long time to comprehend. It
would be much more efficient to de-
rive inspiration from existing code
that serves a related purpose. One
way to find a relevant code snip-
pet is with a quick search on Stack
Overflow. However, if the question
is not already answered on Stack
Overflow, posting a new question
and waiting for a response has a
long latency.

AI in Software
Engineering
at Facebook
Johannes Bader, Sonia Seohyun Kim, Frank Sifei Luan,
Satish Chandra, and Erik Meijer, Facebook, Inc.

// How can artificial intelligence help

software engineers better do their jobs

and advance the state of the practice?

We describe three productivity tools that

learn patterns from software artifacts:

code search using natural language, code

recommendation, and automatic bug fixing. //

Digital Object Identifier 10.1109/MS.2021.3061664
Date of current version: 23 February 2021

AI in Software Engineering

©SHUTTERSTOCK/ALEX GONTAR

JULY/AUGUST 2021 | IEEE SOFTWARE 53

On the other hand, copious amounts
of relevant Android code are avail-
able on GitHub. The problem is that
it is hard to find such relevant snippets
directly from a collection of reposito-
ries. We have created a technique that
can help retrieve a pertinent code snip-
pet directly from source code, starting
with just rough keywords. While the
search does not come with the expla-
nation that a Stack Overflow post has,
it retrieves potentially useful informa-
tion in real time.

Code Recommendation
Even when one does have a start on
which APIs to use for a certain task
at hand, the task is not done. When
writing code, developers are curi-
ous about how other programmers
have written similar code, to get re-
assured or discover considerations
they might have missed. If they di-
rectly search on a large code corpus
for an API name, they might get
tens of thousands of results. What
they instead want is a small set of
sample usages from the repository
that gives them some additional
information.

Consider an example usage of an
Android API method decodeStream:

Bitmap bitmap = BitmapFactory.
decodeStream(input);

However, if one were to look at
related code elsewhere in the reposi-
tory, one variation is to make sure the
app does not crash on an exception:

try {
Bitmap bitmap = BitmapFactory.decode

 Stream(input); …
} catch (IOException e) {…}

This is a different search scenario
that we call code recommendation.
The input is a code snippet, and the

output is a small list of related code
fragments that show only a few rep-
resentative variations of information
that occur commonly enough. We will
discuss our approach to building such
a code recommendation engine in the
“Code Recommendation” section.

Automatically Fixing
Routine Bugs
Code evolves constantly. At Face-
book, the Android app repository
alone sees thousands of commits per
week. Since many of these commits
are fixes to various issues, we can use
ML to figure out the patterns to these
fixes and automatically suggest an ap-
propriate fix.

More specifically, we have found
that fixes to static analysis warn-
ings often come from a large pal-
ette of code patterns. The following
shows an example fix (inserted code
in green) of Infer’s warning on po-
tential NullPointerException (NPE)
(null dereferences) in Java:

if (this.lazyProvider == null || shouldSkip) {
return false;

}
Provider p = this.lazyProvider.get();

The notable point is that devel-
opers have a strong preference for a
certain way to fix a warning, even

though there might exist alternate,
semantically equivalent ways. A tool
that recommends fixes must sug-
gest the one that the developer finds
natural in a given context. We will
talk about a tool that discovers and
learns bug-fixing patterns from data.

Takeaways
These are just some of the many initia-
tives we have started and incorporated
into practice at Facebook. Additional
work includes predictive regression
test selection,1 triaging for crashes,2

and code autocompletion. Our F8 pre-
sentation3 demonstrates how these
tools are integrated into the Facebook
development environment.

Our thesis is that even simple ML
methods can help remove a lot of inef-
ficiencies in the day-to-day life of a de-
veloper. No longer should they spend
a lot of time looking for information
over a repository, finding relevant
information from hundreds of code
fragments, or fixing simple, predict-
able bugs manually. In the next sec-
tion, we describe technical details for
the three topics we have introduced.

Code Search

Background
The ability to search over large
code corpora can be a powerful

When writing code, developers
are curious about how other

programmers have written similar
code, to get reassured or discover

considerations they might have
missed.

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MACHINE LEARNING APPLIED TO CODE

productivity booster. Therefore,
we have explored ways to search
directly over the provided code
corpora using basic natural lan-
guage processing and information-
retrieval techniques.

There have been previous works
in code search, such as CoCaBu4

(a code-search tool that augments
natural language queries by adding
correlated code vocabulary from
Internet forums) and Sourcerer5

(a code-search framework that
searches over open source projects
available on the Internet). However,
these tools are not applicable for in-
ternal use since most of our devel-
opers work with proprietary APIs
and frameworks, which are rarely
discussed on the Internet.

Thus, we came up with an ap-
proach to directly search over the
given corpus. Our tool, called neu-
ral code search (NCS),6 aims to
find relevant code snippet examples
given a query in natural language.

How Does It Work?
NCS is built using the idea of em-
beddings, which are vector rep-
resentations of code that aim to
capture the intent of a piece of
code in a form suitable for ML.
Our hypothesis is that the tokens
in source code are generally mean-
ingful, and embeddings derived
from these tokens can capture the
intent of the code snippet well
enough for a code search. NCS
creates embeddings at the granu-
larity of a method body.

As shown in Figure 1, NCS
works in the following steps.

Extract Information. NCS first ex-
tracts relevant tokens from source
code to create a “natural lan-
guage” document. The informa-
tion NCS extracts includes method

fa
st

T
ex

t
T

ra
in

in
g

T
ra

in
in

g
C

or
pu

s

S
ou

rc
e

C
od

e

W
or

d
E

m
be

dd
in

gs

a 1
,1

a 1
,2

a 1
,3

a 3
,1

a 3
,2

a 3
,3

a 2
,1

a 2
,2

a 2
,3

 .
. .

 .
. .

 .
. .

. . .

. . .

. . .

C
od

e:
pu

bl
ic

 v
oi

d
fo

rV
al

ue
sA

tS
am

eK
ey

(

Ma

p
<K

,V
>

ma
p,

 .
..

)
{

..
.

}

S
ea

rc
h

C
or

pu
s

C
od

e:
pu

bl
ic

 v
oi

d
fo

rV
al

ue
sA

tS
am

eK
ey

(

Ma

p
<K

,V
>

ma
p,

 .
..

)
{

..
.

}
C

od
e:

pu
bl

ic
 v

oi
d

fo
rV

al
ue

sA
tS

am
eK

ey
(

Ma
p

<K
,V

>
ma

p,
 .

..
)

{
..

.
}

C
an

di
da

te
 C

od
e

S
ni

pp
et

s:
pu

bl
ic

 v
oi

d
fo

rV
al

ue
sA

tS
am

eK
ey

(

 M
ap

 <
K,

V>
 m

ap
,

..
.)

 {
 .

..
 }

Q
ue

ry
:

“H
ow

 d
o

I i
te

ra
te

 th
ro

ug
h

a
ha

sh
m

ap
?”

T
F

-I
D

F
 W

ei
gh

ts

w
1

w
2

w
3 . . .

D
oc

um
en

t E
m

be
dd

in
gs

d 1
,1

d 1
,2

d 1
,3

d 2
,1

d 2
,2

d 2
,3

d 3
,1

d 3
,2

d 3
,3

 .
. .

 .
. .

 .
. .

. . .

. . .

. . .

T
F

-I
D

F
W

ei
gh

te
d

A
ve

ra
ge

O
ffl

in
e

C
om

pu
te

Q
ue

ry
 E

m
be

dd
in

g

q 1
,1

 q
1,

2
 q

1,
3

 .
. .

S
or

t b
y

C
os

in
e

S
im

ila
rit

y
S

co
re

T
op

 S
ea

rc
h

R
es

ul
ts

S
ou

rc
e

C
od

e

O
nl

in
e

C
om

pu
te

A
pp

ly
 C

od
e

E
m

be
dd

in
g

A
pp

ly
 C

od
e

E
m

be
dd

in
g

F
IG

U
R

E
 1

.
Th

e
N

C
S

 m
od

el
 tr

ai
ni

ng
 a

nd
 s

ea
rc

h
re

tr
ie

va
l.

N
C

S
 e

xt
ra

ct
s

in
fo

rm
at

io
n

fr
om

 th
e

so
ur

ce
 c

od
e,

 b
ui

ld
s

w
or

d
em

be
dd

in
gs

, a
nd

 u
se

s
TF

-I
D

F
w

ei
gh

tin
g

to
 g

et
 a

 d
oc

um
en

t

em
be

dd
in

g
fo

r
ea

ch
 c

od
e

sn
ip

pe
t.

Th
e

qu
er

y
is

 m
ap

pe
d

to
 th

e
sh

ar
ed

 v
ec

to
r

sp
ac

e,
 a

nd
 th

e
m

os
t r

el
ev

an
t c

od
e

sn
ip

pe
ts

 a
re

 r
an

ke
d

w
ith

 c
os

in
e

si
m

ila
rit

y.

JULY/AUGUST 2021 | IEEE SOFTWARE 55

names, comments, class names, and
string literals.

Build Word Embeddings . NCS then builds
word embeddings using FastText,7

which gives vector representations
for each word in the corpus. Similar
to Word2Vec,8 FastText performs un-
supervised training such that words
appearing in similar contexts have
similar vector representations. For
example, the embedding of button
is the closest with the embeddings of
click, popup, and dismissible when
trained on an Android code corpus.

Build Document Embeddings . Finally,
to create a document embedding for
each method body in the corpus,
NCS computes a weighted average
from its tokenized words and its re-
spective word embeddings, as shown
in (1), where d is a set of words in a
document, C is the corpus containing
all documents, and u is a normalizing
function. This document embedding
serves to capture the overall seman-
tic meaning of the method body.
NCS weights the words using term
frequency–inverse document fre-
quency (TF-IDF) (2), a well-known
weighting technique in information
retrieval. The top portion of Figure 1
shows the NCS model training part.

w d Cu u v tfidf , ,vd w
w d

$=
!
a ^ ^h hk| (1)

,
,log

log
w d C

w d
C w C

1
tfidf , ,

df
tf
$

=
+^ ^

^h hh
h . (2)

Search Retrieval. Upon receiving a
search query, NCS tokenizes the
query and uses the same trained word
embeddings to represent it as a vec-
tor. It is important to note that the
tokenization will turn the natural
language query to a series of main
keywords that captures the essence
of the query. For example, the query

“How to get the ActionBar height?”
will be tokenized to “get action bar
height.” NCS then compares this vec-
tor to the document embeddings, as
discussed previously. NCS ranks the
document embeddings by cosine sim-
ilarity using Facebook AI Similarity
Search,9 a standard similarity search
algorithm that operates on high-di-
mensional data, and returns the top

results. The bottom portion of Fig-
ure 1 shows the search retrieval part.

Evaluation
We evaluated the effectiveness of NCS
on a set of Stack Overflow questions,
with the post title as the query and a
code snippet from the accepted answer
as the desired code answer. Given a
query, we measured whether NCS
was able to retrieve a correct answer
from a large search corpus (GitHub
repositories). Out of 287 questions,
NCS correctly answered 98 questions
in the top 10 results. This evaluation
data set, along with the search corpus,
is publicly available from Li et al.10

Some examples of Stack Over-
flow questions that NCS answers
well are as follows:

• “How to delete a whole folder
and content?”

• “How to convert an image into
Base64 string?”

• “How to get the ActionBar height?”
• “How to find MAC ad-

dress of an Android device
programmatically?”

Sachdev et al.6 include more details
on the training and evaluation of NCS.
We further investigated whether deep
learning models lead to better code-
search results.11

Developer Feedback
The usage of NCS at Facebook was
somewhat different from the way we
had envisioned it. Developers did not
often write Stack Overflow-style ques-
tions; instead, they mostly searched
with keyword queries, such as “con-
tract number amount.” Although the
raw query types were different, with
the tokenization step where we break
down both code snippets and the que-
ries into keywords, we were able to
deploy NCS with no adaptations to
the model at Facebook.

At Facebook, NCS is integrated
into the main code-search tools (e.g.,
the website and IDE) as a complement
to the existing exact-match code-
search capabilities. Initially, the NCS
results and the exact-match (grep-like)
results were shown together. Some-
times, though, developers were look-
ing only for exact matches and got
confused by the interleaving of
results. Consequently, exact-match

NCS is built using the idea of
embeddings, which are vector

representations of code that aim
to capture the intent of a piece of

code in a form suitable for ML.

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MACHINE LEARNING APPLIED TO CODE

results (from the raw queries)
were shown separately from
the NCS results (from the to-
kenized queries).

Code
Recommendation

Background
NCS answers the first question
that every developer has—how
do I do something?—by enabling
natural language search directly
over a large code corpus. Using
NCS, a developer can find this
API for writing code to load a
bitmap image:

Bitmap bitmap = BitmapFactory.decode
Stream(input);

However, real-world coding
does not end here. This line of
code, if written and deployed, can
run on millions of devices in a
variety of different environments.
The developer needs to make
sure that the code will not crash
on people’s phones. Often, this
would mean adding additional
code for a safety check, error han-
dling, and so on. In other words,
the developer has a new question:
is there anything else to add?

Since there are millions of
open source repositories avail-
able, it is highly likely that, given
a particular task, some code al-
ready exists somewhere doing it.
The challenge is, given a query
code snippet and a large code
corpus, how to find similar code
and offer concise, idiomatic cod-
ing patterns to developers.

There exist many coding as-
sistant tools that differ in their
design and model: API recom-
menders suggest APIs given a
coding context, but they do not

if
##

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0

fo
r
(#
)#

(#
)

if
 (
vi
ew
 i
ns
ta
cn
ce
of
 V
ie
wG
ro
up
)
{

 f
or
 (
in
t
i
=
0;
 i
 <
 (
(V
ie
wG
ro
up
)
vi
ew
).
ge
tC
hi
ld
Co
un
t
()
;
i+
+)
 {

Vi
ew
 i
nn
er
Vi
ew
 =
 (
(V
ie
wG
ro
up
)
vi
ew
).
ge
tC
hi
ld
At
(i
);

}

}
#i
ns
ta
nc
eo
f#

vi
ew

Vi
ew
Gr
ou
p

#;
 #
;

#

#;
#+
+

#<
#

in
t#

#=
#

(#
)

(#
)#

ge
tC
hi
ld
Co
un
t

in
ne
rV
ie
w

vi
ew

Vi
ew
Gr
ou
p

()

Vi
ew

#=
#

#.
#

##
i

i
0

i

{#
}

{#
}

C
o

d
e

P
ar

se
 T

re
e

F
ea

tu
re

 V
ec

to
r

F
IG

U
R

E
 2

.
Th

e
fe

at
ur

es
 e

xt
ra

ct
ed

 b
y

A
ro

m
a

fr
om

 a
 p

ar
se

 tr
ee

. T
he

 le
af

 n
od

es
 r

ep
re

se
nt

 c
od

e
to

ke
ns

, w
hi

ch
 a

re
 e

xt
ra

ct
ed

 a
s

to
ke

n
fe

at
ur

es
; t

he
 in

te
rn

al
 n

od
es

re
pr

es
en

t s
yn

ta
ct

ic
 s

tr
uc

tu
re

s
an

d
ar

e
co

nc
at

en
at

ed
 w

ith
 le

af
 n

od
es

 a
s

sy
nt

ac
tic

 fe
at

ur
es

. T
he

 d
iff

er
en

t c
ol

or
s

re
pr

es
en

t d
iff

er
en

t f
ea

tu
re

s
ex

tr
ac

te
d

fo
r

th
e

bo
tt

om
-

m
os

t n
od

e
vi

ew
. R

ef
er

 to
 L

ua
n

et
 a

l.12
 fo

r
m

or
e

de
ta

ils
.

JULY/AUGUST 2021 | IEEE SOFTWARE 57

provide usage examples to help with
integration. API documentation tools
provide helpful usage templates,
but these are limited to API queries
rather than arbitrary code snippets.
Code-to-code search engines return
exhaustive code matches, whereas our
goal is to provide concise recommen-
dations by clustering together similar
results. Aroma is able to overcome all
of these shortcomings.

How Does Aroma Work?
Aroma indexes the code corpus by
creating sparse vector representations
of each method body. To do so, it first
parses the source code to get a simpli-
fied parse tree. Aroma uses this repre-
sentation because it allows the rest of
the algorithm to be language agnostic.

Aroma then extracts features (pre-
sented in Figure 2) from the parse tree
to capture the code structure and se-
mantics. Aroma creates the feature
set of a code snippet by aggregating
the features of all tokens in that code
snippet. After obtaining the vocabu-
lary of all features, Aroma assigns a
unique index to each feature, then con-
verts the feature set to a sparse vector.
Given a query code snippet, Aroma
runs the following phases to create
recommendations.

Feature-Based Search. Aroma takes
the query code snippet and creates a
vector representation using the same
steps in indexing. It then computes
a list of top (e.g., 1,000) candidate
methods that have the most overlap
with the query. This computation
is very efficient by utilizing parallel
sparse matrix multiplication.

Clustering. Aroma then clusters to-
gether similar-looking method bodies.
Instead of showing similar or dupli-
cate code, we want to create a single,
idiomatic code recommendation from

them. Aroma performs a fine-grained
analysis on the candidate methods
and finds clusters based on similarities
among the method bodies.

Intersecting. The final step is to create
one code recommendation for each
cluster of method bodies. The inter-
secting algorithm works by taking
the first code snippet as the “base”
code and then iteratively pruning it
with respect to every other method in
the cluster. Its goal is to return only
the common coding idiom among the
cluster, by removing extraneous lines
that may be just situational in a spe-

cific method. Refer to our paper12 for
full algorithm details.

As a concrete example, suppose
the following two code snippets are
in one cluster and that the first one is
the “base” code snippet:

//Base snippet
InputStream is =…;
final BitmapFactory.Options options = new

BitmapFactory.Options();
options.inSampleSize = 2;
Bitmap bmp = BitmapFactory.decodeStream
 (is, null, options);
ImageView imageView =…;

//2nd snippet
BitmapFactory.Options options = new Bitmap

Factory.Options();
wh ile (…) {

options.inSampleSize = 2;
options.inJustDecodeBounds =…
bi tmap = BitmapFactory.decodeStream(in,

null, options);
}

Both snippets contain a few lines
of similar code but also different
lines specific to themselves. Aroma’s
intersection algorithm compares the
base snippet with the second snippet,
keeping only the lines that are com-
mon in both. It then compares these
lines with the next method body.
The remaining lines are returned as
a code recommendation:

//A code recommendation
final BitmapFactory.Options options = new

BitmapFactory.Options();
options.inSampleSize = 2;
Bitmap bmp = BitmapFactory.decodeStream
 (is, null, options);

Other code recommendations are
created from other clusters in the
same way. Aroma’s algorithm en-
sures that these recommendations
are substantially different from one
another, so developers can learn a
diverse range of coding patterns.

Results
We instantiated Aroma on a large
code corpus of Android GitHub
repositories and performed Aroma
searches with code snippets chosen

Code-to-code search engines
return exhaustive code matches,

whereas our goal is to provide
concise recommendations by

clustering together similar results.

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MACHINE LEARNING APPLIED TO CODE

from the 500 most popular Stack
Overflow questions with the An-
droid tag. We observed that Aroma
provided useful recommendations
for a majority of these snippets.
Moreover, when we used half of the
snippet as the query, Aroma exactly
recommended the second half of the
code snippet in 37 out of 50 cases.

Developer Feedback
At Facebook, Aroma is integrated
into the Visual Studio Code IDE. The
developer selects a portion of code to
be used as a query, and, in response,
Aroma presents a set of code rec-
ommendations. From Aroma’s feed-
back workgroups, this integration
received mixed feedback: developers
were unsure about the use case. Is it
a “teacher” to show better code? Is it
warning about potential code duplica-
tion? In the end, developers were most
interested in seeing examples of API
usage. We have since developed a new
tool for generating code examples13 to
address this need.

Bug Fixing

Background
Large code repositories also come
with a long history of commits (i.e.,
code changes), recording how the
code base evolved into its current
state. If we can find repetitive pat-
terns using ML among these changes,
then we can automate the routine
work that engineers repetitively do.
At Facebook, we have found that one
common class of repetitive changes
encompasses bug fixes. Therefore,
we built a tool called Getafix, which
learns bug-fixing patterns and auto-
matically offers fix suggestions.

Getafix has goals similar to those
of existing automated program repair
techniques, but it fills a previously unoc-
cupied spot in the design space: single/

few shot prediction of natural-looking
fixes, but for specific kinds of bugs. In
contrast to generate-and-validate ap-
proaches,14 we focus on learning pat-
terns from past fixes for specific bug
types and leverage information known
about bug instances (e.g., blamed vari-
able). Getafix does not attempt to find
generic solutions from any sort of in-
gredient space or by generically mutat-
ing the code. It tends to produce actual,
human-like fixes by construction, as it
takes nothing but past human fixes as
inspiration.

How Does It Work?
For clarity, we focus on a specific
type of bug that can crash Android
apps: Java NPE. The following code
snippet shows an example of an NPE
and a possible fix:

public int getWidth() {
@Nullable View v = this.getView();
 return v.getWidth(); //Bug: NPE if v is null
 return v !=null ? v.getWidth() : 0;
}
At Facebook, we use the Infer15

static analyzer to detect and warn
about potential NPEs (the line high-
lighted in red). From the Infer records,
we identify commits that fix the po-
tential NPE (the line highlighted in
green). We scrape hundreds of such
bug-fixing commits from the version
history and use them as training data
for Getafix.

Edit Extraction. To find repetitive pat-
terns of bug fixes (“fix patterns”)
from these training data, Getafix
splits commits into fine-grained ab-
stract syntax tree (AST) edits. Ge-
tafix first parses each file touched
by a commit into a pair of ASTs:
one for the source code before the
changes made, and ano ther for af-
ter the change. Getafix then ap-
plies a tree differencing algorithm

similar to GumTree16 to each pair
of ASTs to predict the edits (inser-
tions, deletions, moves, or updates)
that likely represent the difference.
For the example fix described, Ge-
tafix will extract the following edit:
v.getWidth() " v !=null? v.getWidth(): 0.

Clustering. Getafix takes a data-driven
approach, called antiunification, by
clustering the set of AST edits yielded
by the previous step by similarity: it
merges the most similar pair of ed-
its in the set into a new edit pattern,
abstracting away details only where
necessary. An example follows:

Edit A: v.getWidth() " v!=null
? v.getWidth(): 0
Edit B: lst.size() " lst!=null
? lst.size(): 0
Antiunification: a.b() " a!=null
? a.b(): 0

Antiunification has the desirable
property of merging edit patterns
in the most information-preserving
way possible. Getafix repeats this
step as often as possible, putting the
resulting edit pattern back into the
set in place of its constituents, hence
reducing the size of the set and al-
lowing edit patterns to be merged
and abstracted even further. This
process results in a hierarchy of edit
patterns, with the original edits as
leaf nodes and increasingly abstract
edit patterns closer to the roots.

Fix Prediction. With s uch a hierarchy of
fix patterns for NPE warnings, Getafix
can automatically fix future warnings:
when Infer produces a new, previously
unseen NPE warning, Getafix re-
trieves all patterns that are applicable
from our hierarchy of fix patterns. It
then applies those candidate patterns
to the code, generating candidate fixes,
which are ranked statistically using

JULY/AUGUST 2021 | IEEE SOFTWARE 59

a metric comparable to TF-IDF. To
limit computational cost, one or, at
most, a few of the top-ranked candi-
date patterns are then validated (e.g.,
by running Infer and making sure the
warning disappeared).

The best passing candidate fix
is offered to the engineer as a sug-
gestion he or she can accept or
reject at the click of a button. Ge-
tafix suggests only one fix to limit
the cognitive load and provide a
straightforward user experience. We
do require a final human confirma-
tion since Getafix uses statistical
learning and ranking techniques,
so there is no formal guarantee of
correctness despite certain forms of
validation. For more details about
Getafix, refer to Bader et al.17

Results
Of the Infer NPE warnings fixed by
Facebook engineers since the Geta-
fix service was rolled out, 42% were
fixed by accepting our fix sugges-
tion, and, in 9% of the cases, engi-
neers wrote a semantically identical
fix (which goes to show that develop-
ers are very particular about the fix
suggestions they accept). Note that
our pattern-learning phase takes any
set of changes as input, so a different
scenario we have successfully started
automating is the discovery and ap-
plication of “lint” rules. Changes
made in response to code review are
often fixes to common antipatterns
that were pointed out by a reviewer,
and finding and fixing these antipat-
terns can be baked into a lint rule.

Developer Feedback
We show fix suggestions for warn-
ings during code review and in the
IDE wherever possible. We found
that warnings that came with a fix
suggestion were more actionable and
addressed (whether via accepting the

suggested fix or hand-writing one)
more often than plain warnings. In-
dividual reactions ranged from ig-
noring our suggestions to expressing
excitement about their level of sophis-
tication in internal feedback groups.

We found that semantic equiva-
lence is insufficient to our engi-
neers and that syntactic differences
do matter to them: for instance, we
sometimes predict using a ternary
conditional and, in several cases, ob-
served developers adopt this fix but
negating the condition and swapping
the “then” and “else” expressions. At
this point, the “accept with one click”
experience we provide is ineffective,
so we strive to suggest natural-looking
fixes exactly as our engineers expect,
so syntax and even details like idiom-
atic white space must be human-like.
Our ML-based approach learns pat-
terns that look natural by construc-
tion (learned from real fixes) and also
learns how to rank among them in a
principled way, which would be stren-
uous to replicate manually.

The Big Picture
We now take a step back to discuss
how these ML-based techniques fit

in the broader picture of the soft-
ware development process. In fact,
these techniques have the potential
to influence not just writing or fix-
ing code but almost all stages of the
software lifecycle.

Figure 3 shows a way to think about
modern software development, as
organized in three stages, recurring
in a cycle (not depicted). The work-
flow begins with an individual devel-
oper’s work, which involves editing
the code to implement new func-
tionality, or in response to an issue
and making sure the code compiles
and passes at least some lightweight
quality control (e.g., linters or unit
tests). Next is the team stage: once
the developer is satisfied with a code
change he or she is making, it is sent
in for code review, and, perhaps si-
multaneously, more extensive testing
and verification are kicked off. Ei-
ther of these can require the jumping
back into the individual workflow.

Once code gets released and enters
production, new issues can arise that
were not caught by previous stages.
The process must account for how
such issues are tracked. The produc-
tion stage would typically also include

Edit Build
Test and
Debug

Code
Review

Continuous
Integration

Release

Production Issue
Tracking

Troubleshooting

Individual

Production

Team

FIGURE 3. The common workflows in software development.

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MACHINE LEARNING APPLIED TO CODE

some telemetry that helps with bug
isolation. Feedback from production
kicks off a new cycle, starting again
from the individual stage.

The previous sections talked about
concepts that are primarily applicable
in the code-editing phase of the indi-
vidual workflow. In addition to those
ideas, the most visible developer-facing
use of ML in the code-editing phase is
autocomplete, which has been widely
studied and deployed. More ambi-
tiously, ML techniques can also help
developers complete code via program
synthesis.

Significant opportunities exist in
the other states—for example, we had
previously mentioned our own work
on predictive regression test selection1

and triaging crashes2—but a detailed
discussion of these is outside the scope
of this brief article. Here, in our view,
are some of the most promising but
relatively untapped opportunities for
using ML pertinent to aspects of the
team and production states.

• Code review: Code review, while
widely regarded as essential for
maintaining software quality, is
also a significant time commit-
ment for software engineers. ML
techniques can help automate rou-
tine code reviews (such as format-
ting and best coding practices).
More ambitiously, perhaps ML
can also automatically resolve a
routine code-review comment.

• Assessing the risk of a code
change: In principle, any code
change increases the riskiness of
an application. Arguably, the en-
tire testing and verification pipe-
line exists essentially to reduce
this risk. Can we design ML-
based techniques that provide a
quantitative assessment of the risk
of a code change, complementing
the usual testing and verification

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JOHANNES BADER is a software engineer at Facebook,

Inc., Menlo Park, California, 94025, USA. His research interests

include automatic program repair and programming languages

and verification. Bader received his M.S. in computer science

from Karlsruhe Institute of Technology in 2016. Further informa-

tion about him can be found at johannes-bader.com. Contact

him at mail@johannes-bader.com.

SONIA SEOHYUN KIM is a software engineer at Facebook,

Inc., Menlo Park, California, 94025, USA. Her research inter-

ests include applying machine learning to generate code. Kim

received her B.S. in applied computational math and minor

in computer science from Caltech. Contact her at skim131@

fb.com.

FRANK SIFEI LUAN is a software engineer at Facebook,

Inc., Menlo Park, California, 94025, USA. His research inter-

ests include machine learning and programming languages.

He received his bachelor’s degrees in computer science and

statistics from the University of Chicago in 2017. Further

information about him can be found at franklsf.org. Contact

him at lsf@berkeley.edu.

SATISH CHANDRA is a software engineer at Facebook, Inc.,

Menlo Park, California, 94025, USA. His research interests

include programming languages and software engineering,

including program analysis, type systems, software synthesis,

bug finding and repair, software testing and test automation,

and, most recently, applications of machine learning to devel-

oper tools. Chandra received his Ph.D. in computer science at

the University of Wisconsin-Madison. He is an Association for

Computing Machinery Distinguished Scientist. Contact him at

schandra@acm.org.

ERIK MEIJER is an engineering director at Facebook, Inc.,

Menlo Park, California, 94025, USA. His research interests

include the intersection of programming languages, software

engineering, systems, and machine learning. He is an honorary

professor of programming language design at the school of

Computer Science of the University of Nottingham, member of

the ACM Queue editorial board, and member of the standing

council for Engineering Research Visioning Alliance. Contact

him at erikm@fb.com.

 JULY/AUGUST 2021 | IEEE SOFTWARE 61

pipeline? Advances here will im-
pact both testing (by prioritizing
tests related to riskier changes)
and release management (by
carrying out additional quality
control for riskier code releases).
By comparison, techniques for
assessing the impact of a change
(e.g., Reb et al.18) take a binary
view of affectedness and, due to
the limitations of static analysis,
often would be overly pessimistic
in their assessment.

• Troubleshooting: For widely
deployed applications, custom-
ers send their feedback implic-
itly (telemetry or crashes) and,
sometimes, explicitly by sending
comments. The volume of this
feedback can be huge. This is
another area where ML can help
in multiple ways: not only in tri-
aging these reports, but clustering
them to identify common issues,
finding important clues from
telemetry logs and code changes
that could be connected to the
 issue at hand.

W ith renewed interest in
ML and an emerging
uniformity of software

development processes (common re-
positories as well as continuous inte-
gration and release), industry is ripe
for absorbing these ideas into the
mainstream. At Facebook, we cer-
tainly are transforming our develop-
ment process to be as data driven as
possible.

References
1. M. Machalica, A. Samylkin, M.

Porth, and S. Chandra, “Predictive

test selection,” in Proc. 41st Int.

Conf. Softw. Eng. Softw. Eng. Pract.

(ICSE-SEIP 19), 2019, pp. 91–100.

doi: 10.1109/ICSE-SEIP.2019.00018.

2. R. Qian, Y. Yu, W. Park, V. Mu-

rali, S. Fink, and S. Chandra,

“Debugging crashes using continuous

contrast set mining,” in ICSE-SEIP

'20: Proc. ACM/IEEE 42nd Int.

Conf. Software Engineering: Soft-

ware Engineering in Practice, June

2020, pp. 61–70. https://doi

.org/10.1145/3377813.3381369.

3. J. Bader, S. Chandra, S. S. Kim, and F.

S. Luan, “F8: Using machine learning

for developer productivity.” Facebook,

2019. https://developers.facebook.com/

videos/2019/using-machine-learning

-for-developer-productivity/

4. R. Sirres et al., “Augmenting and

structuring user queries to support

efficient free-form code search,”

in Proc. 40th Int. Conf. Softw.

Eng. (ICSE’18), 2018, p. 945. doi:

10.1145/3180155.3182513.

5. H. Sajnani, V. Saini, J. Svajlenko,

C. K. Roy, and C. V. Lopes, “Sour-

cererCC: Scaling code clone de-

tection to bigcode,” in Proc. 38th

Int. Conf. Softw. Eng. (ICSE’16),

2016, pp. 1157–1168. doi:

10.1145/2884781.2884877.

6. S. Sachdev, H. Li, S. Luan, S. Kim, K.

Seohyun, and S. Chandra, “Retrieval

on source code: A neural code search,”

in Proc. 2nd ACM SIGPLAN Int.

Workshop on Mach. Learn. Program.

Languages, 2018, pp. 31–41.

7. P. Bojanowski, E. Grave, A. Joulin,

and T. Mikolov, “Enriching word

vectors with subword information,”

2016, arXiv: 1607.04606.

8. T. Mikolov, I. Sutskever, K. Chen, G.

Corrado, and J. Dean, “Distributed

representations of words and phrases

and their compositionality,” 2013,

arXiv: 1310.4546.

9. J. Johnson, M. Douze, and H. Jégou,

“Billion-scale similarity search with

GPUs,” 2017, arXiv:1702.08734.

10. H. Li, S. Kim, and S. Chandra, “Neu-

ral code search evaluation dataset,”

2019, arXiv: 1908.09804 [cs.SE].

11. J. Cambronero, H. Li, S. Kim, K. Sen,

and S. Chandra, “When deep learn-

ing met code search,” in Proc. 27th

ACM Joint Meeting European Softw.

Eng. Conf. Symp. Found. Softw. Eng.

(ESEC/FSE 2019), 2019, pp. 964–

974. doi: 10.1145/3338906.3340458.

12. S Luan, D. Yang, C. Barnaby, K.

Sen, and S. Chandra, “Aroma: Code

recommendation via structural code

search,” in Proc. ACM Program.

Languages, Oct. 2019, vol. 3, no.

OOPSLA, pp. 152:1–152:28. doi:

10.1145/3360578.

13. C. Barnaby, K. Sen, T. Zhang, E. Glass-

man, and S. Chandra, Exempla Gratis

(E.G.): Code Examples for Free. New

York: Association for Computing Ma-

chinery, 2020, pp. 1353–1364.

14. X. B. D. Le, D. Lo, and C. Le Goues.

“History Driven Program Repair,”

in Proc. IEEE 23rd Int. Conf. Softw.

Anal., Evolution, Reeng. (SANER),

2016, vol. 1, pp. 213–224.

15. C. Calcagno et al., “Moving fast

with software verification,” in Proc.

NASA Formal Method Symp., 2015.

16. J.-R. Falleri, F. Morandat, X. Blanc,

M. Martinez, and M. Monperrus,

“Fine-grained and accurate source

code differencing,” in Proc. ACM/

IEEE Int. Conf. Automat. Softw.

Eng. (ASE’14), 2014, pp. 313–324.

doi: 10.1145/2642937.2642982.

17. J. Bader, A. Scott, M. Pradel, and

S. Chandra, “Getafix: Learning to

fix bugs automatically,” in Proc.

ACM Program. Languages, Oct.

2019, vol. 3, no. OOPSLA. doi:

10.1145/3360585.

18. X. Ren, F. Shah, F. Tip, B. G Ry-

der, and O. C. Chesley, “Chianti:

A tool for change impact analy-

sis of Java programs,” in Proc.

19th Annu. ACM SIGPLAN

Conf. Object-Oriented Program-

ming, Syst., Languages, Appl.,

Oct. 2004, pp. 432–448. doi:

10.1145/1035292.1029012.

