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Abstract—Software bugs are common and correcting them accounts for a significant part of
costs in the software development and maintenance process. This calls for automatic
techniques to deal with them. One promising direction towards this goal is gaining repair
knowledge from historical bug fixing examples. Retrieving insights from software development
history is particularly appealing with the constant progress of machine learning paradigms and
skyrocketing ‘big’ bug fixing data generated through Continuous Integration (CI). In this paper,
we present R-HERO, a novel software repair bot that applies continual learning to acquire bug
fixing strategies from continuous streams of source code changes, implemented for the single
development platform Github/Travis CI. We describe R-HERO, our novel system for learning how
to fix bugs based on continual training, and we uncover initial successes as well as novel
research challenges for the community.

INTRODUCTION

Developing software is a complex process
that creates software which typically suffers from
errors, such as null pointer exceptions and memory
leaks. These errors can have severe consequences,
ranging from customer dissatisfaction to the loss
of human lives. Correcting the errors manually is
notoriously tedious, difficult, and time-consuming,
and automatically repairing them has long been a
dream in programming.

Among the various proposals for automatic
program repair, one particularly promising cate-
gory leverages machine learning on big data. For
instance, Prophet [9] learns a generic model of
how natural a fix is, and uses the model to rank
patch candidates. Our goal in this article is to

report on our experience in building the program
repair bot R-HERO, which automatically performs
machine learning on continuous integration builds.

Continuous Integration (CI) is deeply inte-
grated into collaborative development platforms
such as GitHub and Bitbucket. Typically, devel-
opers make changes to the code base (called
commits) and a CI service compiles the code and
runs the tests for each commit. This compilation
and test execution phase is called a “build”.
Development using continuous integration results
in a continuous stream of builds. For instance,
in October 2018 alone, there were 9,495,908
Travis CI builds created from 2,378,349 unique
commits on GitHub [5]. Our intuition is that
these build streams provide unique insights on
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how skilled human developers fix bugs. As an
example, Listing 1 shows a real GitHub commit
that replaces the ‘null’ object with ‘this’ object
and makes the CI build process successfully pass.
This patch, drawn from the commit and build
stream, is a piece of evidence that ‘null’ is abused
frequently, and that replacing it with the reference
to the current instance is a viable patching strategy.
Such a patch could be one data point for an ever
learning software repair bot.

Listing 1: A human patch from commit 528696fc of
BenjaminNitro/Project110.

1 @@ -8,7 +8,7 @@ public Celsius(float t)

2

3 @Override

4 public Temperature toCelsius() {

5 - return null;

6 + return this;

7 }

Continual learning (also known as lifelong
learning) is the learning paradigm which con-
sists of learning continuously and adaptively
from a stream of data. Continual learning is
viewed as a fundamental step towards artificial
intelligence [13], and research into this learning
paradigm has produced groundbreaking results
in the past few years. For example, in natural
language processing, chatbots using continual
learning have solved the underlying open-world
knowledge problem [3], which consists of learning
in conversations with facts that have never been
encountered before.

Our key intuition is that, by feeding continuous
integration build streams to continual learning
techniques, the resultant model can potentially
have expertise for fixing different types of bugs
in an open manner. In the past years, we have
worked on this problem and designed the first ever
program repair bot based on continual learning.
We call this bot R-HERO. R-HERO is designed
to repair a specific class of errors: those that
can be fixed with a single-line code change (aka
one-liner). This class of errors has the following
desirable properties: it is a common class of errors,
as witnessed by the fact that one-line commits
constitute a significant portion of all commits [1];
these errors cover a wide range of behavioral
problems such as control flow errors (fixing
conditions), exception errors, missing behavior

(addition of one single method call), etc [19]; one-
line fixing is on the frontier of program repair
research, as the large majority of systems focus
on such bugs [8], [12], [9], [2], [4], [10]. In the
following, we present the architecture for R-HERO,
we report on our recent results on fixing real-life
bugs in continuous integration, and analyze the
research challenges uncovered by our experiments.

Software Repair Bots
Program repair techniques differ in various

ways, including the type of oracle they use, as
well as the targeted bug category [6]. Several
techniques use test suites as the oracle and are
designated as test suite based repair. These repair
techniques are classified into three categories:
heuristic-based [8], synthesis-based [12], and
learning-based [9]. They differ in how they analyze
and modify the buggy code. Due to both the
advancements in machine learning and the massive
amount of available CI data, learning based tech-
niques are increasingly popular. Techniques in this
category have been developed, for instance, to fix
compilation errors [7] and learn meaningful patch
changes [15]. One of the hardest problems of test
suite based repair is that test suites are incomplete.
Consequently, the generated fix can pass the
available tests but break untested functionality.
This problem is called the overfitting issue [14].
Current approaches typically use test augmentation
to alleviate this problem.

The integration of core repair algorithms
into modern development workflows is a key
dimension of the program repair problem space.
One possible integration is through software bots:
SapFix [10] and Repairnator [16] are examples of
bots that constantly monitor software failures and
run program repair tools against each bug. Repair-
nator has produced human-competitive patches,
which were accepted by human developers and
permanently merged into the code base [11]. R-
HERO represents our newest effort in pushing the
state of the art of program repair bots: compared
to Repairnator, R-HERO makes full use of “Big
Commit Data” based on continual learning to ever
improving its repair capabilities.

Continual Learning for Repair
We deploy continual learning on top of con-

tinuous integration build data streams. We argue
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Figure 1: Overview of R-HERO, a software bot that learns to generate patches, build after build.

that continual learning is an appropriate paradigm
for a program repair bot because code constantly
evolves. New libraries and tools get developed,
new approaches to programming problems emerge,
and new security patching strategies are uncovered.
By using continual learning, the idea is that the
overall performance of the repair bot improves
over time, because the repair model is never set in
stone. Continual learning would be able to capture
bug fixing strategies that occur over different time
frames, from days (emergency patching of 0-day
vulnerabilities) to months (API updates) and years
(programming language evolution).

Architecture of R-HERO

Figure 1 shows the six main building blocks
of R-HERO: a) Continuous integration, b) Fault
localization, c) Patch generation, d) Compilation
& Test execution, e) Overfitting prevention, and
f) Pull-request creation. R-HERO stores its knowl-
edge in two databases respectively composed of
human-written and machine-synthesized patches.

R-HERO receives and analyzes the events from
a continuous integration (CI) system such as Travis
CI. It collects commits that result in a passing
build as determined by CI. The changes from a
commit may or may not have been a bug fix,
but the fact that the change passes all tests hints
that it is useful training data. The extraction of
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single-line changes works as follows: for each
commit, R-HERO goes over the corresponding diff
and iterates over each hunk. It extracts training
data only from hunks that describe single-line
changes. This may produce several useful training
data points per commit. In other words, R-HERO

uses the before and after commit code to train
its machine learning model for patch generation.
R-HERO currently relies on the SequenceR ML-
based patch generator [4], a sequence-to-sequence
neural network model trained to receive buggy
code as input and to generate patch proposals as
output. At each training step, SequenceR updates
its model’s weights to determine the tokens that
should be output in the proposed patches.

Next, we detail the repair process, shown with
blue arrows in Figure 1. The repair process is
triggered by R-HERO monitoring the continuous
integration to detect failing builds, manifested by
at least one failing test case. For a given failing
build, R-HERO checks out the version of the
project that produces the failing build. Then, the
fault localization component models the program
under repair and pinpoints the locations that could
be buggy (file names and line numbers). R-HERO

passes the collected locations to SequenceR which
generates one or more potential patches for each
location. Because the patch generation was trained
on any kind of one-line change that results in a
passing build, R-HERO repairs both compilation
errors and test failures.

R-HERO then validates each candidate patch.
It first compiles the patches and executes all
the tests to verify if, after applying the patch,
the compilation and test execution do not fail
anymore. The patches that pass both validations
are known as plausible patches. Once R-HERO

finds plausible patches, it assesses them, in order
to avoid annoying developers with overfitting
patches. This check is based on the overfitting
detection system ODS [17]. ODS is a probabilis-
tic model trained using supervised learning on
both human patches (which are assumed to be
positive examples), and machine patches (labelled
as correct or incorrect), collected from previous
program repair research [18].

Finally, when a high-quality patch is identified
by ODS, R-HERO submits a pull-request to
the corresponding GitHub project which has the
failing build. The pull-request message to the

developer describes the build failure and the patch,
https://bit.ly/3fRIHhd is an example of such a pull-
request.

Achievements of R-HERO

Data Collection
In order to measure the applicability of R-

HERO, we started it from scratch on May 16,
2020. At this date, all weights in the neural
network were random, and R-HERO did not know
anything about how to generate patches. Then,
we started to analyze the stream of continuous
integration build data: looking at passing builds
to train the system in a continual manner, and
trying to generate patches for failing builds. For
this purpose, R-HERO constantly monitors all
Travis CI and GitHub Actions builds for GitHub
repositories that use Maven. Consequently, R-
HERO does not operate on a fixed set of projects,
it can potentially repair any failed build in any
Github project. We continued from this date until
R-HERO had synthesized plausible patches for
projects from 10 different GitHub organizations
(in GitHub, an organization is a shared account
for groups and companies) and until a fully
automated pull-request had been created. Overall,
this execution took 196 days and ended on Nov
28, 2020. At this point R-HERO had collected
550,000 one-line code changes for training and,
based on the trained model, R-HERO had tried to
repair 44,002 failing builds that were reproduced
locally.

We complement this automated patch collec-
tion with manual analysis. To check whether R-
HERO generates human-like fixes for build failures,
we manually collect the fixes implemented by
developers. We find potential developer fixes as
follows: the first commit with a successful build
happening after the failed one. If the manual
analysis of this last pushed commit shows that
it does resolve the failure, we consider it as
the ground truth fix made by human developers.
This manual analysis revealed that one patch
synthesized by R-HERO is identical to the patch
produced by the human developer, described in
the Patch Story section next.

Story of a correct patch by R-HERO

Lizzie is an open-source project hosted on
GitHub. It has 22k lines of code written by more
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than 30 developers along 1,030 commits, and has
been praised with more than 600 GitHub stars. On
the morning of Aug 19, 2020, one commit to Lizzie
broke the Travis CI build. That commit, which
modifies the file GIBParser.java, moved the
declaration of the variable sk to below its first
use. That change produced a compilation error:

“cannot find symbol: variable sk”. As a result,
Travis CI could not build the revision.

Listing 2: R-HERO Patch for build 719254693,
identical to the developer patch, generated after
training over 70,914 commits.

1 @@ -65,7 +65,7 @@

2 int i = line.indexOf("GONGJE:");

3

4 - if (sk != -1) {

5 + if(i!=(-1)){

6 int sk = i + "GONGJE:".length();

7 int ek = line.indexOf(',', sk);

The same morning, R-HERO watched and
analyzed the status of thousands of Travis CI’s
builds, including that one from Lizzie. As soon as
R-HERO detected the broken status of that build,
it started its repair mission. R-HERO first checked
out the failing project and locally reproduced the
failure. Then, R-HERO passed the Lizzie project
to the repair pipeline to find candidate patches.
At this point in time, R-HERO continual learning
model had been trained with data extracted from
70,914 commits. R-HERO’s patch generation out-
put one patch, displayed in Listing 2: it replaces
the variable ‘sk’ (not yet declared at line 6) by
the variable ‘i’, declared a few lines above. R-
HERO verified that the patched program compiled
and passed all Lizzie’s unit tests. In total, R-HERO

took 8 minutes to execute all of the mentioned
steps.

Two days later, Aug 21 2020, a developer
committed a patch that fixed the problem intro-
duced on Aug 19. The patch is identical to the
one automatically synthesized by R-HERO. R-
HERO learned from zero knowledge to create
that patch by only observing the build stream.
It is worth noting that Lizzie, the project repaired
by R-HERO, is the UI of Leela Zero, an open-
source implementation of AlphaGo Zero, a famous
system that learns, also from zero, to play Go.

Overall Performance
Patch Diversity. R-HERO was able to synthe-

size 85 plausible patches to fix 13 failed builds
and made one pull-request. Four of these 13
builds failed due to a compilation error, and
nine failed due to test failures. This demonstrates
that R-HERO is indeed able to fix both types of
bugs (compilation errors and test failures). We
systematically analyzed the 85 patches created by
R-HERO and found that it was able to produces six
types of patches: a) return expression update (21),
b) method invocation update (25), c) assignment
update (12), d) if condition update (26), and
e) removing a try keyword (1). This diversity
of bug fixing strategies confirms that data-driven
repair is effective [2], and shows that R-HERO

captures the variety of problems behind continuous
integration build failures.

Figure 2: The orange line shows the number of
CodRep4 fixes correctly produced by a single

model trained on the data available to that point
in time [4]. The green line shows the cumulative
number of fixes aggregated over all models. The

decrease that regularly happens shows that a
single model sometimes forgets how to fix bugs

previously fixed.

Performance over time. We conduct an exper-
iment based on the protocol of Chen et al. [4]
to measure the overall performance of R-HERO.
The patch dataset, called CodRep4, consists of
3998 pairs of buggy and fixed versions of Java
source code. Each time the R-HERO model is
updated with continual learning (i.e. every three
days approximately), we count the number of
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bugs for which R-HERO generates a patch that
is syntactically identical to the corresponding
fixed version. Note that due to continual learning,
the R-HERO model changes over time, therefore,
R-HERO produces different numbers of correct
patches at different points in time. The results
of this experiment are shown in Figure 2. Each
point on the orange curve indicates the number of
correct CodRep4 patches that R-HERO generates
at a specific point in time. Each point on the
green line shows the cumulative number of correct
patches generated by R-HERO. For example, the
execution on July 1st resulted in correct patches
for 300 buggy files in CodRep4. The increasing
trends in Figure 2 confirm that continual learning
is a valid approach for program repair.

Overfitting Patch Classification. Currently, R-
HERO’s overfitting detection module uses our
best-in-breed model trained from a) 2,003 human-
written correct patches and b) 8,299 automatically
synthesized incorrect patches, labelled by humans
and the automated technique RGT [18]. Of the 85
plausible patches, R-HERO discarded 64 incorrect
patches, showing that it is able to increase the
precision of generated patches reported to the
developer. To further study this, we have per-
formed an in-depth manual analysis for all of
64 patches. Among 64 patches, we identified that
57 patches are overfitting, which means ODS’
classification was correct in 89.06% of cases
on this data, confirming previous research [17].
Overall, ODS and SequenceR work well in concert
n R-Hero, discarding the majority of the overfitting
patches and increasing the value proposition for
the developer.

End-to-end Integration
R-HERO integrates many different state-of-the-

art components from program repair research, and
the question of the feasibility of fully automated
pull-requests is an open one in the community [16].
R-HERO demonstrates that this is the case. On
Nov 28, 2020, after 196 days of training, R-HERO

created a first pull-request to the thomasleplus/xee
project (https://github.com/thomasleplus/xee) with-
out any human intervention: the data collection for
training SequenceR, the patch synthesis, the vali-
dation of the patch using ODS and the mechanism
to propose the patch to the developer were done
by R-HERO in a fully automated manner. This

pull-request proves that R-HERO is able to learn
to repair a failing build from zero, starting with
zero repair knowledge. The proposed pull-request
was not merged by the developer, stating that it
does not fully fix the bug, yet, according to the
developer feedback, the patch exposed incorrect
design in the failing test case.

Reproducibility
All the data of this experiment has been

systematically saved for sake of scientific re-
producibility, it is available on a GitHub
repository (github.com/repairnator/open-science-
repairnator/). For every build, we provide the
Travis CI data, the log file associated with the
execution of R-HERO, and the plausible patches
created by R-HERO. For every patch, we provide
its manual analysis categorization about the failure
and correctness data.

Research Challenges
In this section, we summarize the two impor-

tant research challenges highlighted by R-HERO.

Overfitting Patches and Compilation Errors
To our knowledge, most of the research about

overfitting research focuses on test-based program
repair. Consequently, “overfitting patches” mostly
refer to patches that pass developer-provided test
cases, but don’t correctly fix the bug. Our work
reveals that overfitting can also affect compilation
bugs: we have observed that R-HERO may find
a patch that perfectly repairs a compilation error
while being incorrect. This shows that considering
the compiler as an oracle is flawed, contrary to
the core assumption of the related research on
compilation error repair [7]. In short, the research
challenge is: what kind of additional oracles can be
used to avoid degenerated patches in compilation
error repair?

Catastrophic Forgetting
Continual learning is prone to a problem

called catastrophic forgetting, which occurs when
newly learned knowledge interferes with capa-
bilities previously learned by the model [13].
This phenomenon causes the model to forget
old knowledge and potentially leads to decreased
performance. In Figure 2, the orange line repre-
sents the performance of R-HERO evaluated on
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a reference dataset. As we can see, during the
initial stage, the performance steadily improves,
but R-HERO stops improving after one month of
continual learning. Then, the performance varies
and even sometimes decreases. However, the green
line in Figure 2 (cumulative number of correct
fixes) shows that R-HERO is still learning to
repair new bugs. This indicates that the non-
monotonic increase of the the orange line is due
to R-HERO forgetting previously learned bug
fixes, i.e., catastrophic forgetting is happening.
Our experiment is the first one to show that
catastrophic forgetting happens in the context
of learning-based program repair, and our initial
investigation of the problem reveals that it is a
hard research problem.

Limitations
Though R-Hero shows great promise in fixing

software bugs happening in continuous integration,
its limitations clearly call for future work: 1) R-
Hero is trained on one-line changes, this limits
R-Hero from fixing complex bugs requiring multi-
line edits (as for most existing repair systems).
2) the prototype implementation of R-Hero does
not scale: among the considered 44,002 failing
builds, R-Hero has only repaired 13/44,002 builds.
This is arguably a low ratio but, to the best of
our knowledge, nobody has ever succeeded in
reporting a higher ratio on arbitrary builds from
continuous integration (i.e. by drawing from the
field distribution of all possible bugs). So far, R-
Hero has done a single pull-request, discussed
above, and we hope it is the beginning of a fruitful
series of bot contributions.

Conclusion
We believe that continual learning and con-

tinuous feedback are essential ingredients to go
beyond pure software technology. They provide a
useful paradigm to incorporate human knowledge
into a self-improving software system, and for
automated repair, they enable software engineering
research to achieve a truly socio-technical repair
system. To that extent, R-HERO is a milestone in
showing that developers and bots can cooperate
fruitfully to produce high-quality, reliable software
systems.
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