
126 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

 TODAY, WE FIND ourselves in a
surprising situation: we understand
software architecture fairly well,
but we find it difficult to put it into
practice. This is because most soft-
ware developers work within itera-
tive processes that focus attention
on what’s new, and because fac-
tory-inspired metaphors encourage
ever-quicker movement from feature
requests to deployed code. How did
that happen?

A big idea from Bertrand Russell’s
A History of Western Philosophy is
that “[T]he circumstances of men’s
lives do much to determine their phi-
losophy, but, conversely, their philos-
ophy does much to determine their
circumstances.”1 Around the year
2000, we changed our philosophy of
software development in two ways.
Those two changes, in turn, led to
the circumstances that we see today.

Two Philosophy Changes
The first change in philosophy was
in the object-oriented community’s
attention, from design to manage-
ment. In the 1990s, the discussion
was about how to design object-
oriented systems. Thought leaders
prescribed engineering activities,
l ike choosing objects, modeling
the problem domain, expressing it
with a modeling notation, allocat-
ing responsibilities, and describing

 contractual behavior including precon-
ditions and postconditions. Patterns
were the means of communicating
how to design.

Around 2000, thought leaders
shifted their attention to manage-
ment activities: organizing meetings,
interacting with the business, seating
arrangements, and, most importantly,
the use of iterations. Despite broad
agreement that iterative processes
worked better than waterfall pro-
cesses, most teams in the 1990s were
still using waterfall. My inference is

that agile advocates found it hard to
apply their design ideas under these
circumstances, so they set out to cre-
ate circumstances suitable for object-
oriented design and programming.

The second change in philosophy
was the popularization of factory-style
production metaphors, including: au-
tomation, minimization of work in
progress, and reducing cycle times.
These ideas found a natural home in
the emerging practice of DevOps. The
traditional split between software de-
velopers, testers, and system operators
was joined into a single role. This cre-
ated the desired circumstances: a de-
veloper with this combined role had
the perspective and ability to identify
inefficiencies, automate them, and
seek continuous improvements.

These two changes in philosophy
led to the intended changes in circum-
stances, but also other changes. To-
day, developers find it easier to focus
on incremental changes instead of the
system as a whole, and they seek im-
provement by reducing the time be-
tween a feature request and its moving
to production. These circumstances
make it easy to pile up technical debt,
despite warnings and advice. The rest
of this article shows how these circum-
stances arose: through changes in the
dominant decomposition, reinforce-
ment by tooling, overloading of devel-
opers, and the inevitable dominance

Why Is It Getting Harder
to Apply Software
Architecture?
George Fairbanks

Digital Object Identifier 10.1109/MS.2021.3071520
Date of current version: 18 June 2021

Around the year 2000, we changed our
philosophy of software development in
two ways.

THE PRAGMATIC DESIGNER

JULY/AUGUST 2021 | IEEE SOFTWARE 127

of quantifiable metrics over intangible
design concepts.

 Dominant Decomposition
Engineering systems typically have a
single dominant decomposition. Con-
sider libraries, for example. Some li-
braries organize shelves by the size
of the books, to optimize for scarce
space. Other libraries organize shelves
by the book topic, to make browsing
easier. A library has a choice—or-
ganize by size or by topic—and that
choice sets the dominant decomposi-
tion of the library.

Software processes also have a
dominant decomposition. Consider
waterfall and iterative processes. A
waterfall process focuses on the sys-
tem as a whole. In phases, develop-
ers collect requirements for the whole
system, analyze the whole system,
design the whole system, and so forth
until the whole system is finished. In
the early phases of a waterfall, there
is no code yet, so developers cannot
yet be focusing on a series of code
patches. In this way, waterfall pro-
cesses require holistic thinking.

Typically, an iterative process fo-
cuses on what’s new in the current it-
eration: the new features, user stories,
and code patches. Developers using
an iterative process do the same kinds
of activities as in waterfall—analy-
sis, design, and implementation—but
focus their attention on what’s new,
not on what already exists. In partic-
ular, the code patches they make are
largely additions to the existing code,
not a rewrite of the whole system.

 Tools Reinforce the
Decomposition
In the 1990s, tools encouraged thinking
about the system as a whole. If soft-
ware development were exaggerated in
a movie, viewers would see a machine
in a big room with developers in lab

coats walking up and changing it. Pes-
simistic version control systems were
common in the 1990s, meaning that
opening a source code file for editing
would also lock it, preventing others
from editing it at the same time. This re-
inforced the idea that you were directly
editing “the single system,” the one held
in the central version control system.

In contrast, today it’s common to
create patches against a locally held
copy of the system’s code, sending
those patches to be reviewed by your
team, then push those patches into the
main version control repository. You
recognize that your local copy of the
source code inevitably falls behind the

main repository, and the lifecycle of a
patch includes not just authoring but
also peer review of that patch, catch-
ing the patch up to the current code,
and subsequent revisions.

Big open source projects like the
Linux kernel were early adopters of
the patch-focused view, and chose
version control systems that made it
possible. Linus Torvalds invented the
Git version control system in 2005.
Git became popular with developers
besides the Linux kernel hackers, and
they adopted its patch-focused view.
Teams can and do think about the
system as a whole, but their tools di-
rect attention on the series of patches.

 Juggling Two Decompositions
Today, developers must keep the domi-
nant decomposition in mind (the new

features expressed as a stream of
patches) as well as the secondary de-
composition (the system as a whole).
That is not easy, however, and is a
skill that must be learned. Let me
tell a quick story that I think illus-
trates the challenge.

When I was in college, a bunch of
us would play pool. None of us were
good, but we improved over time.
At first, my attention was on hitting
that first ball into a pocket. After a
while, I was okay at that, and I no-
ticed that to improve, I needed to
leave the cue ball in a good place for
a second shot. As I tried to do that, I
found myself making more mistakes

on my first shots. Eventually, I got
good enough that my first-shot per-
formance recovered, and I could be
ready for a second shot.

Let’s call hitting the first ball as
the dominant decomposition, be-
cause if you cannot do that, nothing
else matters. But you won’t be suc-
cessful if you can’t also set up the
second shot. When we’re still learn-
ing, we can barely do the first thing,
then we stumble as we try to balance
multiple concerns, then with enough
practice we can do both.

Software developers go through
this progression, too. At first, they
struggle to implement any feature,
then they struggle to implement fea-
tures while also balancing technical
debt (doing both poorly), then with
enough practice they can do both

Typically, an iterative process focuses
on what’s new in the current iteration:
the new features, user stories, and
code patches.

THE PRAGMATIC DESIGNER

128 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

well. Most teams have developers at
each skill level. From this viewpoint,
a feature-focused iterative process
asks quite a bit from developers.

 Factory Metaphors
In the 1990s, most systems had
scheduled downtime, which was
used to push new code into produc-
tion. Deployments were not auto-
mated, and I had to walk over to a
teammate’s desk to ask what code
was in production, or what updates
had been applied to the database.

On some teams, we deployed code
so infrequently, just a few times per
year, that everyone knew what code
was deployed.

Today, these practices are rare and
production systems run nonstop.
How do developers make changes to a
system with no scheduled downtime?
They rely on the patch as an atomic
unit and follow an intricate dance
with feature toggles and a sequence of
patches. How do they move their code
to production so quickly? Through
automation: they write code that com-
piles, tests, and deploys the code, per-
haps even monitoring it for trouble
and rolling back to a working version.

I’ve always been a fan of automat-
ing development processes, especially
involving testing and moving code to
production. These go hand-in-hand
with a factory metaphor. Automa-
tion has led to incremental improve-
ments, year over year, just like you’d
expect in factories.

A big driver of those improve-
ments is faster cycle times. Modern
factories pride themselves on avoid-
ing stockpiles of work in progress,
and on how quickly they can trans-
form their raw materials into prod-
ucts. In software development, teams
pride themselves on how short their
iterations are, and how quickly a
feature is deployed into production.
This produces an ever-better ma-
chine but perhaps at the cost of
the code becoming a poor partner
in thought.

 Code as a Machine, and
as a Thought
In an earlier column, I wrote about
code’s dual nature as a machine and
as a thought.2 It’s possible to write
code that works perfectly well as a
machine, yet it is an imperfect carrier
of our thoughts. One way to do that
would be to replace all of the variable
names with meaningless identifiers,
like x and y. The code would continue
to work equally well as a machine, but
less well as a carrier of our thoughts.
Code can also fail as a thought because
it reveals obsolete ideas. Technical debt
occurs when our thoughts move for-
ward, yet the code we wrote yesterday
still expresses our former thoughts.

When developers are designing
a system, they form their thoughts
about how to solve a problem, then
they write code that matches those
thoughts. Quick cycles give us quick
feedback about which ideas don’t
work out in practice, which makes

design easier. On balance, though,
it’s hard to design within quick cy-
cles. There are factors to weigh,
alternatives to generate, and impli-
cations to reason through. Factories
do the same thing over and over, but
each design problem is unique, even
when it is similar to previous ones.

What’s worse, on today’s projects,
the other developers on the team will
be evolving the system. They won’t be
trying to hide the changes from you,
exactly, but their communication will
be imperfect. On small projects, you
could perhaps read every change to
the code and reason through its sig-
nificance in the overall design, but
that’s a hefty burden. As cycles be-
come shorter, and the system becomes
larger, it’s harder to keep up with all
of the changes, to the point where de-
velopers may stop trying, and instead
keep their focus limited.

 A Healthy Balance
There are two parts to software de-
velopment: creating a design and
expressing it as code. The code is
tangible but the design is conceptual.
Keeping a project healthy means do-
ing both well. Here’s my concern:
whenever you mix the conceptual
with the tangible, it’s easier to neglect
the conceptual. When you miss a tan-
gible target, it’s obvious, but when
you miss a conceptual target, you
might not recognize it, or might ratio-
nalize that, because it’s impossible to
measure, you were really quite close.

Blindly applying a factory pro-
cess to software development will
drive improvements to the tangible
part (the code) at the expense of the
conceptual part (the design). We see
plenty of examples of this today,
where teams have great feature veloc-
ity at first, are puzzled when velocity
slows, and eventually the project is
abandoned. As Cunningham warned,

Git became popular with developers
besides the Linux kernel hackers, and
they adopted its patch-focused view.

THE PRAGMATIC DESIGNER

JULY/AUGUST 2021 | IEEE SOFTWARE 129

if we bolt features onto an existing
codebase without consolidating those
ideas into the code, the design will
suffer, and over time “[e]ntire engi-
neering organizations can be brought
to a standstill under the debt load of
an unconsolidated implementation.”3

This challenge exists in any pro-
cess, but it’s worse when the domi-
nant decomposition is the feature.
For all its faults, the waterfall pro-
cess forced us to think holistically
about the design. But an iterative
process can work just fine. Plenty
of teams keep their designs healthy
within iterative processes. Those that
succeed, I think, are finding ways
to keep thinking holistically about
the system. If you worry about the
health of your system’s design, ask
how your process guides developers
to think holistically, and if develop-
ers are rewarded for doing so.

One additional point here, and
it’s a bit of a forward reference be-
cause I intend to write more about
Peter Naur’s ideas on theory build-
ing in the future. He says:4

[P]rogramming properly should be
regarded as an activity by which
the programmers form or achieve a
certain kind of insight, a theory, of
the matters at hand. This sugges-
tion is in contrast to what appears
to be a more common notion, that
programming should be regarded
as a production of a program and
certain other texts.

Design and architecture are part
of what Naur calls a theory. If we
follow Naur and regard program-
ming as the forming of a theory (the
conceptual part), then it’s dangerous
when we tailor our processes toward
the production of the program (the
tangible part). Instead, processes
should guide us to the neglected

activities that deserve attention. Naur
describes his experience watch-
ing developers who misunderstood
the theory of a program make poor
choices when implementing features,
choices that degraded the design.

 New Circumstances, New
Philosophies
Bertrand Russell observed that our
circumstances determine our philoso-
phy, and our philosophy determines
our circumstances. In the past few
decades, we changed our philosophy
to embrace iterative processes and
factory metaphors. As a result, today
it’s easier to build typical applica-
tions, get them to production without
drama, and keep them running 24/7.

By the late 1990s, we understood
software architecture pretty well,
and it was poised to become a stan-
dard part of software development.
Around the same time, the software
development world became inhos-
pitable to the holistic thinking that
characterizes architecture.

Has the time come for software
architecture? Perhaps. Today, be-
cause of the circumstances, many
teams say technical debt is their
primary challenge. We should ex-
pect these changed circumstances
to lead to a changed philosophy. I’m
sure the new philosophy will not be

waterfall processes and manual de-
ployments. Instead, I think we will
find ways to focus on the system’s
overall design as our primary con-
cern, with each new feature a sec-
ondary, but still critical, concern.
Under these circumstances, devel-
opers will manage technical debt
better, and it will be easy and natu-
ral to apply architecture ideas in ev-
eryday practice. Of course, that will
again change our circumstances,
but my crystal ball is too hazy to
see what happens next.

 References
1. B. Russel, A History of Western

Philosophy. New York: Simon and

Schuster, 1967.

2. G. Fairbanks, “Code is your partner

in thought,” IEEE Softw., vol. 37,

no. 5, pp. 109–112, Sept./Oct. 2020.

doi: 10.1109/MS.2020.3000084.

3. W. Cunningham, “The WyCash

portfolio management system,” in

Proc. Addendum Object- Oriented

Program. Syst., Languages,

Appl. (OOPSLA 92), Vancouver,

Canada, Oct. 5–10, 1992. doi:

10.1145/157709.157715.

4. P. Naur, “Programming as the-

ory building,” Microprocess.

Microprogram., vol. 15, no. 5,

pp. 253–261, May 1985. doi:

10.1016/0165-6074(85)90032-8.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google, USA. Contact

him at gf@georgefairbanks.com.

