
122 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

Automatic Program
Repair
Jeffrey Carver, Ricardo Colomo-Palacios, Xabier Larrucea, and Miroslaw Staron

FOLLOWING ALONG WITH the
theme of this issue of IEEE Soft-
ware, this column reports on papers
about automatic program repair (APR)
from the 35th IEEE/ACM Interna-
tional Conference on Automated Soft-
ware Engineering (ASE20), the 35th
IEEE/ACM International Conference
on Automated Software Engineering

Workshops (ASEW20), and the 13th
IEEE International Conference on
Software Testing, Validation and
Verification (ICST20). Feedback or
suggestions are welcome. In addi-
tion, if you try or adopt any of the
practices included in the column,

please send us and the authors a note
about your experiences.

Antipatterns for Java
 “Antipatterns for Java Automated
Program Repair Tools” by Yi Wu
analyzes plausible patches, that is,
patches that produce correct outputs
for all inputs in the test suite but may

fail beyond the test suite, for Java
code generated by automated repair
tools such as SimFix, CapGen, and
LSRepair to identify deficiencies in
these patches. The author manually
identifies antipatterns, a set of forbid-
den code transformations, in these
plausible patches and applies antipat-
terns to improve repair performance.
The paper integrates antipatterns in

jGenProg2 and evaluates them on the
Defects4J benchmark. Concerning the
number of plausible patches, the origi-
nal jGenProg2 and the jGenProg2
with antipatterns integrated produced
67 and 29 patches respectively for
14 Defects4J bugs, showing a reduc-
tion of 38 plausible patches. The aver-
age repair time for these 14 Defects4J
bugs is reduced by 22.6%. The study
provided evidence about the effective-
ness of applying antipatterns in future
Java automated repair tools. This pa-
per appears in the ASE20 conference
proceedings. Access it at http://bit.ly/
PD-2021-July-01.

Automating Patches:
Dynamic and Static
“Automated Patch Correctness As-
sessment: How Far are We?” by Shan-
gwen Wang and colleagues presents
the results of an empirical study on
the effectiveness of automated patch
correctness assessment techniques,
including both static and dynamic
approaches. This paper addresses
plausible patches that are considered
overfitting patches, that is, they do
not fix the target bug. APR tools
face the overfit t ing problem be-
cause they generate more overfit-
ting patches than correct patches,

Digital Object Identifier 10.1109/MS.2021.3071567
Date of current version: 18 June 2021

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

In addition, if you try or adopt any of
the practices included in the column,
please send us and the authors a
note about your experiences.

PRACTITIONERS’ DIGEST

	 JULY/AUGUST 2021 | IEEE SOFTWARE � 123

resulting in low precision. The au-
thors assessed 902 patches automati-
cally generated by 21 APR tools.
This analysis shows that while static
approaches (for example, ssFix, Cap-
Gen, and S3) are appropriate for
identifying some overfitting patches
(53.5%), dynamic approaches help
with identifying and solving these
patches and have higher precision
(93.3%). More specifically, the au-
thors analyzed dynamic tools requir-
ing an oracle (for example, Evosuite,
Randooop, DiffTGen, and Daikon)
and without an oracle (for example,
Patch-sim, e-patch-sim, R-Opad, and
e-pad). Finally, authors designed a
strategy to integrate static code fea-
tures via learning and then combine
those results with others through
majority voting. This paper ap-
pears in the ASE20 conference pro-
ceedings. Access it at http://bit.ly/
PD-2021-July-02.

Dealing With Strings
“No Strings Attached: An Empiri-
cal Study of String-Related Soft-
ware Bugs” by Aryaz Eghbali and
Michael Pradel argues the lack of
knowledge about string-related bugs
can lead developers to repeat the
same mistakes. This problem is rel-
evant primarily in languages where
strings play a critical role such as Ja-
vaScript. However, it is also critical
in other contexts like building data-
base queries or in reflection-like ac-
cess of an object property based on
the property name. This paper de-
scribes a study of 204 string-related
bugs in JavaScript from 13 popular
open source projects. The results of
this study show almost all of these
bugs (95.6%) result from one or
more recurring root causes, that is,
bugs in string literals and bugs in
regular expressions (42% and 37%,
respectively). There are other root

causes such as the incorrect usage
of string APIs (13%) and compari-
son and operations involving strings
(6%). These bugs result in incor-
rect output (30%) or file corruption
(5%). Only 11% of the bugs gener-
ate an error message. In addition, the
authors suggest that clever test ora-
cles must be defined and automated
code analysis tools must be used at
different stages. String-related bugs
are spread over the entire software
system, and 53% of the bugs are af-
fecting the core functionality of the
projects. Their empirical study re-
veals that 61% of the bugs can be
solved by modifying a single line
of code, and 25% by using tokens
found close to the bug location. This
paper appears in the ASE20 confer-
ence proceedings. Access it at http://
bit.ly/PD-2021-July-03.

Unified Debugging
“On the Effectiveness of Unified De-
bugging: An Extensive Study on
16 Program Repair Systems” by Sam-
uel Benton and colleagues describes
the results of a study on unified de-
bugging, that is, a new debugging
methodology that unifies fault local-
ization and repair. More specifically,
unified debugging utilizes the patch-
execution results from repair systems
to help improve state-of-the-art fault
localization. In this way, unified de-
bugging not only improves fault lo-
calization for manual repair but also
extends the application scope of au-
tomate repair to all bugs. This study
of 16 APR systems, including jKali,
SimFix, and PraPR, reveals various
practical guidelines for unified debug-
ging: 1) nearly all of the 16 studied
repair systems can positively contrib-
ute to unified debugging despite their
varying repair capabilities; 2) repair
systems targeting multiedit patches
can introduce extraneous noise into

unified debugging; 3) repair systems
with more executed/plausible patches
tend to perform better for debugging;
and 4) unified debugging effectiveness
does not rely on the availability of cor-
rect patches in automated repair. This
paper appears in the ASE20 confer-
ence proceedings. Access it at http://
bit.ly/PD-2021-July-04.

Coding Patterns and
Code Review
“Characterizing Colocated Insecure
Coding Patterns in Infrastructure
as Code Scripts” by Farzana Ahamed
Bhuiyan and Akond Rahman pres-
ents an empirical study of over 7,000
Puppet Scripts from Mozilla, Open-
Stack, and Wikimedia to understand
insecure coding patterns. Examples
of insecure coding patterns that sug-
gest potential weaknesses include use
of HTTP without TLS/SSL or us-
ing hard-coded or default passwords.
Understanding how these insecure
coding patterns spread in the infra-
structure as code will help practitio-
ners prioritize which code to review.
The approach in this paper uses un-
supervised machine learning and as-
sociation rule mining, to find pairs
(or triplets) of insecure coding pat-
terns. The results show a significant
number of colocated insecure patterns
(on the order of thousands). The ap-
proach in this paper helps developers
identify problematic coding patterns
and then focus the manual review ef-
fort appropriately. The next step in
this work is to automate these reviews
and fix the problems, for example, by
replacing the HTTP protocol with
the HTTPS protocol. The paper also
describes which source code metrics
can automatically identify the insecure
coding patterns—for example, hard-
coded strings, the number of attri-
butes, the number of includes or even
the simplistic lines-of-code metric.

PRACTITIONERS’ DIGEST

124 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

This paper appears in the ASEW20
conference proceedings. Access it at
http://bit.ly/PD-2021-July-05.

Maximizing Oracle Accuracy
“Human-in-the-Loop Automatic Pro-
gram Repair” by Marcel Böhme, Charaka

Geethal, and Van-Thuan Pham pres-
ents Learn2Fix, a technique that
automatically repairs function bugs
even if no automated code exists.
Indeed, Learn2Fix’s novelty is that
it can automatically learn a condi-
tion under which the bug is replicated
by asking questions to the bug-re-
porting user. Learn2Fix uses an un-
biased committee of automatically
created oracles to generate test cases
automatically and determine whether
these tests pass. The promising results
show that Learn2Fix can predict the
test case label (that is, whether the au-
tomatically generated test case passes
or fails) with over 75% accuracy af-
ter seeing only one failing test from a
labeled test suite. In addition, Learn-
2Fix can obtain similar proficiency
in identifying failing test cases while
requiring the human to review fewer
of them. This learning approach
helps users identify/suggest test cases
to trigger user-reported bugs before
fixing these bugs. The software devel-
oper and the user can then more eas-
ily verify the fix. Learn2Fix can be
used both by experienced program-
mers, who know the system well,
and junior programmers, who are
just learning the system under test.
While the technique currently works
only on numerical inputs, it should
be extensible to other types. This pa-
per appears in the ICST20 conference
proceedings. Access it at http://bit.ly/
PD-2021-July-06.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JEFFREY CARVER is a professor in the University of Alabama’s

Department of Computer Science, Tuscaloosa, Alabama, 35487,

USA. Further information about him can be found at http://carver

.cs.ua.edu. Contact him at carver@cs.ua.edu.

RICARDO COLOMO-PALACIOS is a professor in the Department

of Computer Sciences, Østfold University College, Halden, 1757,

Norway. Contact him at ricardo.colomo-palacios@hiof.no.

XA BIER LARRUCEA is a main researcher at TECNALIA, Basque

Research and Technology Alliance, Derio, Bizkaia, E-48160, Spain.

Contact him at xabier.larrucea@tecnalia.com.

MIROSLAW STARON is a professor in the software engineer-

ing division, Chalmers University of Technology, and the University

of Gothenburg, Gothenburg, SE-412 96, Sweden. Contact him at

miroslaw.staron@cse.gu.se.

