
FOCUS: GUEST EDITORS’ INTRODUCTION

10 Years of Technical
Debt Research and
Practice: Past, Present,
and Future
Marcus Ciolkowski , QAware

Valentina Lenarduzzi , LUT University

Antonio Martini , University of Oslo

Digital Object Identifier 10.1109/MS.2021.3105625
Date of current version: 22 October 2021

24 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

 NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 25

DELIVERING INCREASINGLY COM -
PLEX software-reliant systems de-
mands better ways to manage the
long-term effects of short-term expe-
dients. The technical debt (TD) meta-
phor has gained significant traction as
a way to understand and communi-
cate such issues. Almost 25 years after
the term was coined in 1992 by Ward
Cunningham, and more than 10 years
after the first edition of the TechDebt
workshop/conference series, we take a
brief look at the past, present, and fu-
ture of TD.

TD’s Past: Origins and
First Research
TD is a popular metaphor in soft-
ware engineering. Cunningham in-
troduced it1 to explain the need for
continuous refactoring to his man-
agers: working in an iterative in-
stead of a waterfall model increased
project speed, much like borrow-
ing money. Rather than spending
time to first understand a problem,
a project starts programming imme-
diately with partial comprehension.
This way, working code can be de-
livered faster, and users can provide
feedback to better meet their needs.
However, as with any debt, if you
continually take on more, it is es-
sential to regularly pay back some of
the principal. Otherwise, a project
can be crippled by interest. In soft-
ware engineering, this point can be
reached, for example, when the cost
of new features and maintenance ex-
ceed the budget: a project reaches a
state of bankruptcy.2

TD interest can take many forms.
The most well known is lower main-
tainability: the upkeep cost is higher
than it would be otherwise. How-
ever, TD interest can affect other
internal and external qualities, such
as performance, operability (e.g.,
increasing costs), and usability (e.g.,

leading users to avoid a product or
spend more time completing tasks).
All these result in expenses that may
strain a project budget and are rel-
evant to consider for TD manage-
ment. Paying back TD, according to
Cunningham, means software needs
to be refactored to reflect knowledge
gained during the course of a project:
refactoring should strive to continu-
ously rewrite software “to look as if
we had known what we were doing
all along … and as if it had been easy
to do.”1 In this interpretation, TD
includes deficiencies in internal and
external software qualities: refactor-
ing may result in redesigning a use
case (e.g., because we learn what us-
ers really need) and rewriting lines to
fix design and code-level issues (e.g.,
because we learn how a new frame-
work actually should be used).

This original understanding has
been both narrowed and broadened.
It has been restricted to refer to de-
ficiencies in internal software quali-
ties rather than Cunningham’s more
comprehensive view. Fowler’s and
McConnel’s definitions are prob-
ably the most well known, and they
interpret TD as deficits in internal
quality, which is similar to the defi-
nition derived at a Dagstuhl seminar
on the topic.3 At the same time, they
broaden the definition to include ad-
ditional causes and forms of TD: in
their view, it can be committed de-
liberately or inadvertently and pru-
dently or recklessly. This expands
Cunningham’s interpretation, as de-
liberate TD, e.g., taking shortcuts
by “writing bad code” to speed up
development, is an idea he explicitly
opposed. Today, the meaning has
been further expanded to “any code
that a developer dislikes … hacky
code, code written by novices, code
written without consideration of
software architecture (so-called big

balls of mud), and code with anti-
patterns flagged by static analysis
tools.”4 All in all, it is well accepted
that projects will always have some
TD, and taking on TD can be useful,
sometimes even required, to achieve
success (e.g., for start-ups to attain a
critical time to market).

The TD metaphor was quickly
taken up by the industry. Together
with concepts from the broken win-
dows theory, it paved the way for
business and technical people to
discuss software quality. Addition-
ally, the emergence of agile concepts
and frameworks helped practitio-
ners to embrace managing TD since
they all emphasize software quality
and continuous refactoring to a cer-
tain degree.

Researchers began investigating
TD in the early 2000s. Until 2010,
only a few articles were published,
while from 2010 to 2015, the first
larger studies emerged, which con-
tributed to conceptualizing TD.5,6
TD has been categorized.7 However,
only some types of TD have been
thoroughly investigated, leaving oth-
ers in need of more in-depth explora-
tion. TD in code (also named code
debt) is by far the most studied as-
pect. A large number of works about
mining software repositories, in ad-
dition to surveys and case studies,
have investigated the impact of post-
poning refactoring specific issues
(e.g., code smells and antipatterns).
Financial aspects of TD have also
been examined.2 Many, however,
have not received the same attention,
at least from the TD point of view.
Research led to commercial tools
for identifying TD that were taken
up by the industry and thus helped
spread the concept. Popular tools,
such as SonarQube, developed add-
ons to estimate a TD principal based
on a code smell and rule violations.

FOCUS: GUEST EDITORS’ INTRODUCTION

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

The downside was that they mani-
fested the impression that TD con-
sists of low-level code deficiencies
and nothing else.

 TD’s Present: Better
Understanding, the
First Evidence, and New
Practices
After the first TD workshop, in
2010, publications about the topic
began to multiply, especially in the
past five years. In 2016, research-
ers and expert practitioners (e.g.,
from Siemens and Google) from all
around the world participated in the
Dagstuhl seminar,3 with the purpose
of understanding the state of the
art, clarifying the TD concept, and

compiling a road map for future re-
search. In addition, a few systematic
literature reviews were compiled, and
several surveys of practitioners were
conducted, shedding light on prac-
tices in various countries. A key re-
sult is insight into the (costly) impact
that TD has on software develop-
ment: on average, an estimated 30%
of development resources are wasted
because of TD, with peaks of 80%,
leading to project crises and hinder-
ing efforts to reach new customers.8

In addition, TD seems to have an
impact on the development commu-
nity’s social structure and the morale
of developers, who often refer to high
levels of it as “wading through mud.”

Researchers and practitioners
have focused on several topics, rang-
ing from measuring TD in code bases
(e.g., studying several TD indexes)
to improving awareness during soft-
ware organization. Studies have
shown that creating TD awareness
in organizations is critical to estab-
lishing effective identification and
management tools and processes. A
recent trend has been to investigate
debt items that are self-admitted or
tagged in code by developers. Ongo-
ing research also focuses on how to
enhance software processes, studying
how teams work with TD and intro-
duce tracking and management pro-
cesses.9–11 Software companies are
immature at managing TD, mostly

using unsystematic approaches and
a few tools to identify low-level code
debt.9 One key issue is that the bulk
of the tools focus on detecting TD in
code and low-level designs and ar-
chitectures,12 and there is little to no
support for detecting other kinds of
debt. Although there are tools for de-
tecting architectural issues, they are
complex, and most do not provide
a clear indication of “debt” and, es-
pecially, interest related to the issues
they are able to find. In addition,
current tools lack accuracy (they
produce many false positives), com-
pleteness (they do not cover many
important issues), and refinement
(they are not usable in practice).

Given the hard (if not impossible)
task of measuring TD, it is necessary
to estimate principal and interest to
prioritize TD in practice.13 In fact,
TD can be beneficial in the short
term, but its avoidance or removal
is often down-prioritized in favor of
feature development, which causes it
to be sticky and toxic in some con-
texts (i.e., it spreads and grows in a
contagious manner). Understanding
how to estimate current and future
TD principal and interest, also in
relationship with an organization’s
road map, is key to contextualizing
and making informed decisions. In
addition, TD needs a connection to
a company’s business, as it should
be prioritized based on its impact
on product value. Different authors
have proposed approaches to priori-
tize TD removal and the develop-
ment of new features.13

 TD’s Future: New
Perspectives and
Well-Known Open Issues
TD research has slowly evolved
during the past 10 years. What are
the big challenges for the next de-
cade? The articles in this special
issue provide a hint: novel practi-
cal solutions for well-known issues
have been proposed, and gaps have
been identified that need to be filled.
One study analyzes how TD is espe-
cially challenging in the presence of
uncertainty, requiring a collabora-
tive approach to managing it. Two
surveys of practitioners summarize
pitfalls and solutions in specific do-
mains (agile projects and game de-
velopment). One of them provides
insights into how impediments, deci-
sion factors, enabling practices, and
action diagrams can help implement
preventive measures, monitoring
techniques, and TD repayment pro-
cesses. The second analyzes how the

An estimated 30% of development
resources are wasted because

of TD, with peaks of 80%, leading
to project crises.

NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 27

gaming industry accumulates TD
and compares this to other sectors.
One article looks into fostering TD
prioritization and communication by
conceptualizing causes, effects, pay-
ment practices, and payment avoid-
ance reasons, with a prioritization
schema for technical and nontechni-
cal roles.

Challenges in a data science con-
text are described in another study
that summarizes experience with
data-driven TD management gained
in several industry research projects.
Using data to identify (architectural)
TD is possible by measuring archi-
tectural smells in code: one of the
studies investigates how practitio-
ners perceive architectural smells,
what maintenance and evolution is-
sues they associate with them, how
they introduce them, and how they
deal with them in terms of practices
and tools. Finally, the special is-
sue contains a study that reports on
dealing with TD in procedural lan-
guages, drawing from analysis and
experience with GO and advocating
for improved techniques to identify
debt in that and other languages.

Based on the publications of the
past few years, we can expect to see
more works investigating the im-
pact TD has on internal qualities,
such as faultiness, reliability, and
code maintainability, maybe with
increased support for nonobject-
oriented languages. However, from
a practical perspective, the current
focus on internal qualities is too re-
strictive: when arguing for repaying
TD, interest should include not only
maintainability but other forms,
such as operating expenses, oppor-
tunity costs, security, user experi-
ence problems, and product value.
As an example, very recent research
highlights how TD is detrimental
to the morale (and productivity) of

developers. Another key quality that
was prominent at the 2021 TechDebt
conference is the impact TD has on
security. Such a relationship needs to
be further investigated.

Automatically identifying TD
items should not be the only focus:
practitioners also benefit from sup-
port in detecting TD indirectly via
indicators, and they need to be able
to trace such items to the actual debt
in the code. Root cause analysis will
most likely remain a manual process
in many cases. A TD indicator may
be a batch job that slowly but con-
tinuously takes longer or consumes

more memory (perhaps because of
a memory leak or growing data vol-
ume). This may go unnoticed for a
long time until the system crashes,
causing incidents that require an
emergency hotfix (usually a quick
and dirty solution), which again in-
creases TD. Detecting such indica-
tors early is important.

Researchers should consider other
aspects of TD, such as economic and
long-term impacts and reasons why
debt removal may be postponed. To
this purpose, indicators and “smells”
should not only consider code bases
but include new sources of data, for
example, project information, docu-
mentation, and versioning tools.
Similarly, aspects such as organiza-
tional structures and social contexts
may provide valuable insight into

how to avoid and manage TD. In ad-
dition, we need to extend the scope
of research to higher-level debt, such
as architectural-level TD, which is
often overlooked even though it is
considered one of the more expensive
types.8,14 Researchers have explored
architectural-level TD in several ar-
ticles to better understand what it is
and how to manage it. However, so-
lutions are still preliminary.

Other types of less understood
and understudied higher-level TD
are requirements and domain-level
debt.15 Requirements debt is typically
defined as a gap between known

requirements and an application
(e.g., requirements are deliberately
implemented incompletely to meet
a deadline, with the intent to do the
rest of the work later). Domain debt
denotes a disparity between an appli-
cation and a domain, which may be
unknown to the development team.
This is often similar to requirements
debt but could be seen as incomplete,
incorrect, and unidentified require-
ments and domain models instead of
a misalignment of documented stipu-
lations and an implementation.

For example, users may work
differently than expected, or an as-
sumption about a domain could
be incorrect (e.g., that calendar ap-
pointments are always single events).
As a consequence, users may lack
support for an important workflow

Software may look perfect if
examined without domain knowledge:

the code may be of high quality and
compliant with all documentation.

FOCUS: GUEST EDITORS’ INTRODUCTION

28 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

step, or a data model might be dif-
ficult to adapt and not match do-
main rules (e.g., times are expressed
as Coordinated Universal Time off-
sets, which do not facilitate appoint-
ment series). Software may look
perfect if examined without domain
knowledge: the code may be of high
quality and compliant with all doc-
umentation. However, users might
suffer, and the system might be dif-
ficult or impossible to extend to
new requirements (e.g., enabling ap-
pointment series requires redesign-
ing the data model according to time
zone information). TD items are not
constrained to maintainability but
spread, for example, to operability,
usability, and business agility. These
types of higher-level debt are hard to
manage because domain knowledge
is often required to spot them, and
they are based on the problem space
rather than the solution space. That
typically makes them cross-cutting
and expensive, both in principal and
interest, as they involve many stake-
holders for analysis and repair.

One of the most important topics
to address is how to estimate prin-
cipal and interest and prioritize TD.
After all, the whole purpose of the
research in this area is to understand
when TD should be taken up, when
it should be kept, and when it should
be avoided or repaid. This process
probably will not be completely au-
tomated since context knowledge
is often required. However, teams
will benefit from methods enabling
them to systematically assess TD and
make informed decisions. Although a
few approaches have been proposed,
steps toward more holistic support
are needed. For example, other types
of debt, such as social and process
debt, have been shown to generate a
large amount of TD. It is important
to thoroughly study the (economic)

impact TD has. Only with clear evi-
dence and a broad collection of prac-
tical experiences can we ultimately
convince stakeholders that TD needs
to be taken into consideration when
evolving a system. Researchers and
the industry need to work together to
collect more evidence.

New technologies are constantly
introduced, and the continuously
evolving software industry keeps
adopting them, often without con-
sidering their pros and cons and ac-
cumulating more TD than expected.
Examples include cloud-native tech-
nologies, such as microservices and
microfront ends. When adopting
them, companies should consider
the TD they will incur as they rush
to redevelop systems. Solutions to
partially mitigate this issue exist, but
they need to be thoroughly inves-
tigated from the TD viewpoint. As
an example, continuous integration/
continuous deployment and infra-
structure as code might enable com-
panies to simplify the configuration
and management of their systems.
This potentially helps reduce the TD
due to quick configuration patches—
or it may increase it if naively done.
Another example is the continued
hype surrounding machine learning
and artificial intelligence. Compa-
nies are still not aware of methods to
keep the quality and TD of such ap-
plications under control.

Another area of future work cen-
ters around process support. Since
agile frameworks and DevOps are
on the rise, it will be important to
provide guidance for how to inte-
grate TD management and mitiga-
tion strategies into development
approaches. For example, agile
processes offer an opportunity to
adopt good TD management (e.g.,
through Scrum tools, such as retro-
spectives, the definition of done, and

continuous refactoring). This is em-
phasized even more in DevOps since
business, development, and opera-
tions become integrated and system-
atic user feedback is heavily stressed.
However, there is a risk that devel-
opers may find themselves in a fea-
ture factory where there is a strong
focus on developing new features
and almost no awareness and man-
agement of TD.

In summary, we have analyzed
the past, present, and future of TD
management. There have been 10
years of research and practice since
the first TechDebt workshop, and
TD has been discovered, debated,
and analyzed from several points of
view. Evidence has emerged about
its good and bad effects, and initial
approaches have been proposed to
manage it, but more research and in-
sights are needed. We believe it will
take several more years to bring TD
management from adolescence to
adulthood.

References
1. W. Cunningham, “The WyCash

portfolio management system,” in

Proc. Addendum Object-Oriented

Program. Syst., Lang., Appl. (Ad-

dendum) - OOPSLA ’92, Van-

couver, BC, 1992, pp. 29–30. doi:

10.1145/157709.157715.

2. A. Ampatzoglou, A. Ampatzoglou,

A. Chatzigeorgiou, and P. Avgeriou,

“The financial aspect of managing

technical debt: A systematic literature

review,” Inf. Softw. Technol., vol. 64,

pp. 52–73, Aug. 2015. doi: 10.1016/j.

infsof.2015.04.001.

3. P. Avgeriou, P. Kruchten, I. Ozkaya,

and C. Seaman, Eds., “Managing

technical debt in Software engineer-

ing,” Schloss Dagstuhl Leibniz-

Zentrum, Dagstuhl, Germany,

Dagstuhl Rep., Dagstuhl Seminar

16162, 2016.

NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 29

4. G. Fairbanks, “Ur-technical debt,”

IEEE Softw., vol. 37, no. 4, pp.

95–98, July/Aug. 2020. doi: 10.1109/

MS.2020.2986613.

5. P. Kruchten, R. L. Nord, and I.

Ozkaya, “Technical debt: From

metaphor to theory and practice,”

IEEE Softw., vol. 29, no. 6, pp.

18–21, Nov./Dec. 2012. doi: 10.1109/

MS.2012.167.

6. E. Tom, A. Aurum, and R. Vidgen,

“An exploration of technical debt,”

J. Syst. Softw., vol. 86, no. 6, pp.

1498–1516, 2013. doi: 10.1016/j.

jss.2012.12.052.

7. Z. Li, P. Avgeriou, and P. Liang,

“A systematic mapping study on

technical debt and its management,”

J. Syst. Softw., vol. 101, no. C, pp.

193–220, Mar. 2015. doi: 10.1016/j.

jss.2014.12.027.

8. T. Besker, A. Martini, and J. Bosch,

“Software developer productivity loss

due to technical debt—A replication

and extension study examining de-

velopers’ development work,” J. Syst.

Softw., vol. 156, pp. 41–61, Oct.

2019. doi: 10.1016/j.jss.2019.06.004.

9. A. Martini, T. Besker, and J.

Bosch, “Technical debt track-

ing: Current state of practice: A

survey and multiple case study

in 15 large organizations,” Sci.

Comput. Program., vol. 163, pp.

42–61, Mar. 2018. doi: 10.1016/j.

scico.2018.03.007.

10. J. Yli-Huumo, A. Maglyas, and K.

Smolander, “How do software de-

velopment teams manage technical

debt? – An empirical study,” J. Syst.

Softw., vol. 120, pp. 195–218,

Oct. 2016. doi: 10.1016/j.jss.2016.

05.018.

11. N. Rios, R. O. Spínola, M. Men-

donça, and C. Seaman, “The

practitioners’ point of view on

the concept of technical debt

and its causes and consequences:

A design for a global family of

industrial surveys and its first

results from Brazil,” Empirical

Softw. Eng., vol. 25, no. 5, pp.

3216–3287, 2020. doi: 10.1007/

s10664-020-09832-9.

12. P. C. Avgeriou et al., “An over-

view and comparison of technical

debt measurement tools,” IEEE

Softw., vol. 38, no. 3, pp. 61–71,

May/June 2021. doi: 10.1109/

MS.2020.3024958.

13. V. Lenarduzzi, T. Besker, D. Taibi, A.

Martini, and F. Arcelli Fontana, “A

systematic literature review on tech-

nical debt prioritization: Strategies,

processes, factors, and tools,” J. Syst.

Softw., vol. 171, p. 110,827, Jan.

2021. doi: 10.1016/j.jss.2020.

110827.

14. N. A. Ernst, S. Bellomo, I. Ozkaya,

R. L. Nord, and I. Gorton, “Measure

it? Manage it? Ignore it? Software

practitioners and technical debt,”

in Proc. 2015 10th Joint Meeting

Found. Softw. Eng. (ESEC/FSE

2015), New York: Association

for Computing Machinery, pp.

50–60. doi: 10.1145/2786805.

2786848.

15. H. Störrle and M. Ciolkowski,

“Stepping away from the lamppost:

Domain-level technical debt,” in

Proc. Euromicro Conf. Softw. Eng.

Adv. Appl. (SEAA), 2019, p. 8. doi:

10.1109/SEAA.2019.00056.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MARCUS CIOLKOWSKI is the lead IT consultant at QAware,

Munich, 81549, Germany. Contact him at marcus.ciolkowski@

qaware.de.

VALENTINA LENARDUZZI is a researcher at LUT U niver-

sity, Lappeenranta, 15210, Finland. Contact her at valentina

.lenarduzzi@lut.fi.

ANTONIO MARTINI is an associate professor at the Univer-

sity of Oslo, Oslo, 0373, Norway. Contact him at antonima@

ifi.uio.no.

