
114 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

IN THE ALLEGORY of the cave, Plato
argued that invisible concepts, such as
geometry, could be more true than any
figures that we imperfectly scratch in
the sand. The triangles and squares
that we can observe with our eyes
are just shadows cast on the wall of
a cave by the pure ideas that we can-
not observe directly. This presents us
with a choice: should we fixate on the
shadows we can see, or use them to
discover hidden truths?

Today, two and a half millennia af-
ter Plato wrote his allegory, software
developers make that same choice.
Some developers see source code as

the truth. Others see source code as
the shadow on the wall that provides
clues about the truth, which is the
problem and solution that cannot be
observed directly. I doubt Plato would
be surprised that we are still debating.

 Many developers consider them-
selves as pragmatic and therefore de-
cide that seeking invisible truth is
something best left for philosophers
and academics. I disagree. The Wright
brothers were deeply pragmatic, yet in
their quest to be the first to fly, they
both built airplanes and developed
theories about aviation. They built an
airplane before others precisely because
they pursued both.

Importantly, the Wright brothers
used an iterative approach. Iterations
forced them to build something in-
stead of spending all their time on
philosophy. Iteration is what makes

it possible, and indeed pragmatic, for
engineers to both get things working
and seek the invisible truths that ex-
plain how to make things work better.

 Here’s the rub: iteration means
different things to different people.
“Code is the truth” developers iter-
ate on the code, adding features over
time. I call this code-focused iteration

(CFI). “Shadow on the wall” develop-
ers iterate on their understanding
and on the code, making both better
over time. I call this design-focused
iteration (DFI).

Because the word “iteration” is
ambiguous, developers can declare “we
are iterating” and yet be doing quite
different things. Small changes in
day-to-day activities lead to different
outcomes after just a few months. De-
velopers doing CFI erode their designs,
impair their readiness for the next re-
quirement, and reduce their productiv-
ity. In contrast, developers doing DFI
strengthen their design with each itera-
tion, solve their problems better, and
enjoy their work.

Kinds of Iteration
What do CFI and DFI look like in
practice? Let’s start with some famil-
iar nonsoftware examples of iteration.
When you get a new pair of eye-
glasses, your optometrist uses itera-
tion to adjust them to fit your head.
The two of you alternate between
wearing and adjusting the glasses un-
til both of you are satisfied with how
well they fit. The optometrist is using
a hill-climbing algorithm: examining
the situation and making a change
for the better. In this kind of iteration,
no one is seeking invisible truths. You
and the optometrist attend solely to
what is visible, using a technique to
improve a machine (your eyeglasses)
for the better. This is CFI but with eye-
glasses instead of code.

Two Kinds of Iteration
George Fairbanks

Digital Object Identifier 10.1109/MS.2021.3121737
Date of current version: 23 December 2021

Many developers consider
themselves as pragmatic and
therefore decide that seeking
invisible truth is something left for
philosophers and academics.

THE PRAGMATIC DESIGNER

JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 115

Car engines are another example.
When a new generation of engine
comes out, it typically has unforeseen
problems. The automotive engineers
identify and fix these problems itera-
tively and, over several years, as de-
sign flaws are fixed, that generation of
engine becomes more reliable. This is
CFI but with engines instead of code.

Those same automotive engineers,
however, are also doing something else.
Across generations of engines, they are
building up their understanding of ev-
erything involved with building en-
gines: the materials, the combustion,
the wear on parts, the machines that
create the engines, the environment the
engines will be placed into, and so on.
They are using their experience with
the tangible to learn about the invisible.
 By building up their understanding of
the invisible truths, their next genera-
tion of engines will be better than the
previous. This is DFI applied to engines.

 Let’s return to software develop-
ment. Imagine a system used to schedule
university classes that already handles
semesters, and let’s say the developers re-
ceive a new requirement: trimesters. The
developers make minor changes to the
code to support the requirement. (You
can imagine many similar changes that
would not force any significant reflec-
tion on the nature of university classes
or on the design of the software.) De-
velopers can make those changes by
attending solely to the code itself, ap-
plying a hill-climbing algorithm. This
is CFI.

Consider a different requirement for
this university software: that teachers
can attend classes. Let’s say the code
has one data structure for teachers
and another for students. If Prof. John
Doe wants to take a class, the system
would be tracking him twice, with his
information duplicated in the two data
structures. So, this requirement forces
developers to reflect on what they

understand about university classes.
They iterate on their invisible under-
standing of how things work and revise
their ideas. Perhaps they land on the
idea of introducing two new concepts:
people and roles. Where they previously
thought of teachers and students, they
now think of people who play the roles
of teachers and students. They revise the
code to match this new understanding.
This is DFI.

Code Refines a Design
It’s tempting to ignore distinctions be-
tween CFI and DFI, instead thinking
only of developers making a series
of edits to the code to improve it.
After all, developers may interleave
thinking and coding, and in fact this
can accelerate their DFIs. But fail-
ure to distinguish CFI from DFI can
doom a project. When Ward Cun-
ningham coined the term technical
debt, he described how iteration,
done poorly, could bring “[e]ntire
engineering organizations … to a
stand-still.”1

 So, what is CFI missing? In a word,
 refinement. DFI improves both the de-
sign and the code so that, over time,
the design becomes an increasingly
good fit to the problem at hand. By
contrast, CFI, by accumulating fea-
tures, improves only the code.

 Refinement is the relationship be-
tween design and code. Your design
guides your code and limits some of
your implementation choices. Any-
thing present in the design must also

be in the code but not vice versa. Con-
sider the university class scheduling
system in the earlier example. You
have a lot of implementation choices.
You could implement it in any pro-
gramming language, using any variety
of algorithms, and on any hardware
platform. However, there are limits.
The ideas from the design—people
and roles, semesters and trimesters—
may not be contradicted in the code.

As a developer, why should you
voluntarily constrain yourself? How
can shackles help you solve problems?
A good design makes it easier to write
good code. In the earlier example, the
design change from teacher–students
to people–roles isn’t a shackle, it’s a
gift. Clear thoughts in the design can
avoid any number of corner cases in
the code. A good design allows you
to make broad conclusions without
reading through every line of code.
For example, a map-reduce design
insists that each map job be idempo-
tent, so you can conclude that it’s safe
to reschedule jobs that are running
slowly. The idea of idempotence is one
of those invisible truths in a design
that you cannot see directly in code.

Design can feel more true than source
code, just as geometry can feel more true
than any imperfect diagrams we might
draw. Consider the vending machine
problem that’s often used in introduc-
tory programming courses along with
a finite state machine design. Is that de-
sign not more true and real than any

Small changes in day-to-day activities
lead to different outcomes after just a
few months.

THE PRAGMATIC DESIGNER

116 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

student’s code that implements it? And
if you had a new requirement, perhaps
to handle a new coin, wouldn’t you
revise the state machine and then edit
your code to match it?

Iteration With a Goal
Years ago, when waterfall processes
were common, refinement was a fact of
life. Developers were forced to confront
the refinement relationship between de-
sign and code because design happened
early in the project and code not until
later. All developers were aware of how
their design related to their code.

When I mention waterfall pro-
cesses, some people misinterpret this
as me advocating for upfront design.
The goal is to have a refinement re-
lationship between design and code,
but that goal can be accomplished
through upfront design or iterative de-
sign. As Desmond D’Souza and Alan
Cameron Wills said: “Refine ment is a
relationship, not a sequence.”2 Plenty
of articles have demonized upfront
design, but the bigger problem is ne-
glecting the goal of refinement.

Consider the two iterative processes
shown in Figure 1. One will help you

improve the code, while the other im-
proves both the code and the design.3
Teams using DFI are bringing the de-
sign with them on their journey. It is a
constant companion. CFI and DFI are
both iterative, but only DFI has the
goal of nurturing the refinement be-
tween design and code.

CFI is vulnerable to problems that
grow worse over time.4 The first prob-
lem is the sedimentary buildup of old
ideas. In the university example, you
probably could have edited the code
so that your teacher and student data
structures survived. Obsolete ideas
can accumulate in code like sediment,
making it hard for other developers
to understand the design and reason
about it.

The second problem is loss of in-
tellectual control. If you iterate only
on the code, whatever design you
have will deteriorate and provide less
value. You lose your ability to reason
through the system using abstraction

When you make a change to the code, is there often a corresponding change to the design?
In DFI, you coevolve the code and the design.

Over time, do your design abstractions fit the problem increasingly well?
In DFI, you evolve your design to avoid special cases and bent rules.

As time goes on, is it easier or harder to build the next feature?
In DFI, your abstractions are a foundation that speeds development, not a liability to be worked around.

Do you have design abstractions that are not directly expressible in code?
In DFI, developers think about and talk about design abstractions that their programming language cannot express
(for example, idempotence).

If you had been given the requirements all at once instead of sequentially, would you have designed
something like this?

In DFI, you course-correct your design in each iteration. Your design and code should look like you knew what you were
doing all along, even though your understanding grew gradually.

Is the team gaining insight into the matters at hand?
In DFI, the team builds up a theory of the problem and solution.

In each iteration, do you build a revised running system?
In DFI, both design and code are updated in an iteration. If you iterate on the design alone, that’s a phase in a waterfall
process.

FIGURE 2. What kind of iteration are you using? How to recognize DFI.

Code-Focused Iteration

1) Get the new requirement/feature.
2) Write the test case.
3) Edit the code minimally
 so the test passes.
4) Later on, the refactor removes
 the code duplication.

Design-Focused Iteration

1) Get new requirement/feature.
2) Revise the design, if necessary.
 (Is the architecture OK?
 Is the domain model OK?)
3) Write the test case.
4) Revise the code to match the design.

FIGURE 1. The two kinds of iteration.

THE PRAGMATIC DESIGNER

JANUARY/FEBRUARY 2022 | IEEE SOFTWARE 117

and instead must trace the code line
by line. When obsolete ideas accu-
mulate and intellectual control is lost,
projects become technical zombies
without vitality.

 Refactoring the Design,
Not Just the Code
For decades, refactoring has been held
up as the way to repair iteration’s
flaws. That’s only partly right. Most
projects use refactoring merely to tex-
tually rearrange code. How do devel-
opers make that mistake? If you look
at books and websites on refactoring
techniques, you’ll see them describe
mechanical activities, but those are
shadows on the wall. Such refactor-
ing is helpful, but it’s akin to fixing the
grammar and spelling in an essay with
half-baked or obsolete ideas.

The truly valuable part of refactor-
ing is invisible. The best description of
how to use refactoring to evolve your
design is in the Domain-Driven De-
sign (DDD) book section on “Refac-
toring Toward Deeper Insight.”5 It
suggests that the goal is to develop
“deep models” and “supple designs,”
which happens during breakthroughs:

[C]ontinuous refactoring prepares
the way for something less orderly.
Each refinement of code and model
gives developers a clearer view. This
clarity creates the potential for a
breakthrough of insights. A rush
of change leads to a model that
corresponds on a deeper level to the
realities and priorities of the users.
Versatility and explanatory power
suddenly increase even as complex-
ity evaporates.

That is exactly what you hope to
achieve by iterating. However, 17 years
after that was written, most develop-
ers are still refactoring superficially,
doing CFI. If I had to guess why, I

would say it’s because most develop-
ers haven’t heard of the idea or think
that the entire DDD package of ideas
is a poor fit for their project and so
neglect this critical technique.

 Iterate Toward a Clean Design
Plato wrote the allegory of the cave
to teach us that invisible ideas can be
more important than the visible shad-
ows on the wall. We read his words
thousands of years later not because
they are easy but because they are un-
comfortable. It’s far easier and com-
fortable to attend to what we can see
directly than to heed someone ranting
about hidden truths. In fact, the sec-
ond half of the allegory discusses how
people who have only ever seen shad-
ows would react when told about the
invisible figures casting those shad-
ows. Plato’s verdict was grim: they
would kill the messenger.

When I look around our industry at
what teams are doing, I see many good
practices such as iteration, refactoring,
testing, and automated deployments.
Despite those similarities, some teams
are succeeding and others are suffering.
What distinguishes them is how well
they nurture their design (see Figure 2).
As teams abandon upfront design, I fear
that many of them are doing CFI, ac-
cumulating technical debt through
sedimentary layers of obsolete ideas, and
building technical zombies.

For a long time, we believed that
iteration and refactoring were
sufficient to keep a design healthy,

but we can no longer believe that af-
ter seeing so many tangled designs and
zombie projects. Software development
is an intensely cognitive activity that
cannot be reduced to simple activities re-
peated mechanically. Good design, while
invisible, is critical and must be a goal of
refactoring. By recognizing the distinc-
tion between CFI and DFI developers
can adjust their activities slightly to keep
their design healthy.

 References
1. W. Cunningham, “The WyCash port-

folio management system,” in Proc.

OOPSLA 92, Vancouver, Canada,

Oct. 5–10, 1992, pp. 29–30, doi:

10.1145/157709.157715.

2. D. F. D’Souza and A. C. Wills, Objects,

Components, and Frameworks with

UML: The Catalysis Approach. Boston,

MA, USA: Addison-Wesley, 1998.

3. M. Keeling, T. Halloran, and G. Fair-

banks, “Garbage collect your technical

debt,” IEEE Softw., vol. 38, no. 5, pp.

113–116, Sep./Oct. 2021, doi: 10.1109/

MS.2021.3086578.

4. G. Fairbanks, “The rituals of iterations

and tests,” IEEE Softw., vol. 37, no.

6, pp. 105–108, Nov./Dec. 2020, doi:

10.1109/MS.2020.3017445.

5. E. Evans, Domain-Driven Design. Read-

ing, MA, USA: Addison-Wesley, 2004.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google. Contact him at

gf@georgefairbanks.com.

