
SOFTWARE
ENGINEERING RADIO

Editor: Robert Blumen
Katana Graph
robert@robertblumen.com

126 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

 Philip Winston: What is a time-series
database?

 Audrey Lawrence: It’s a database that
is purpose built for data points that
are measured over time. Time-series
databases are useful for measuring
events that change over time. They
allow for efficient collection, storage,
and analysis on top of these data—
from doing streaming analytics in
real time to training machine learn-
ing models off historical time-series
data. They allow complex analyses
on top of time-series data.

Why can’t developers store time-series
data in a Structured Query Language

(SQL) database, a key-value store, or
some type of long-existing database?

You run into problems scaling those
kinds of systems out for performance
and costs. Because time-series data-
bases are purpose built for this type
of data, they are more efficient at in-
gesting, storing, and querying. There
are also a lot of plug-ins you can use
to easily collect and ingest these met-
rics and visualization tools that help
later with querying. The solutions
that teams may need to store time-
series databases can get complex
and take a lot of developer time to
build, maintain, and scale out. Of-
ten the metrics stored in time-series
databases are critical business or op-
erational metrics that must be timely
and correct. Time-series databases

can solve problems more cost-effec-
tively with better performance.

 How does someone create a data
model for a time-series database?
How is this different from modeling
for an SQL database?

The core unit is a record, a single mea-
surement at a point in time. A series of
these measurements over time makes
up the time series. For each time se-
ries, you have a group of attributes or
dimensions that describe that time se-
ries. You store those in databases and
tables to organize the data and con-
trol access, retention, and so on. An
example would be a fleet of hosts in
a system. You could have a DevOps
database and a host-metrics table. The
dimensions stored with the time series

Time-Series Databases
and Amazon Timestream
Philip Winston

Digital Object Identifier 10.1109/MS.2022.3148943
Date of current version: 18 April 2022

From the Editor

Audrey Lawrence of Amazon discusses time-series databases and the new Ama-

zon database offering, Amazon Timestream. Philip Winston speaks with Lawrence

about data modeling, ingestion, queries, performance, lifecycle management, hot

data versus cold data, operating at scale, and the advantages of a serverless archi-

tecture. We provide summary excerpts below; to hear the full interview, visit http://

www.se-radio.net or access our archives via RSS at http://feeds.feedburner.com/

se-radio.—Robert Blumen

SOFTWARE ENGINEERING RADIO

MAY/JUNE 2022 | IEEE SOFTWARE 127

would be things like the region where
that fleet is located, hostname for the
different posts, operating system ver-
sion, and the actual metrics you’re col-
lecting, like CPU utilization, memory
utilization, and traffic input–output.

Time-series databases also tend
to have a f lex ible schema. For
Timestream, outside of creating a da-
tabase and a table, you don’t declare
your measurements and dimensions
up front; you do that when you’re in-
gesting data, and Timestream will
figure that out and store the data
appropriately. In an SQL store, you
typically have tables with one row
per measurement, so each of these
attributes would be in a denormal-
ized view in that row. These dimen-
sion values would be repeated for
each measurement, which can be
costly because you’re storing a lot
more data. And you also have to read
through those data when you’re doing
queries. Typically, you’ll add an index
on the Time column and on some of
the dimensions, so that you can have
queries based on those dimensions.
This also gets hard to balance because
you don’t want to add too many indi-
ces. And then ingestion will cost a lot.
But you also need to leverage these in-
dices at query time, or sometimes the
queries can get way too slow.

 What specifically about queries is
faster with a time-series database
compared to SQL?

Time-series databases optimize how
they store data, such as storing all of
the data points for one series together
and then storing the similar series to-
gether. When you’re serving a query,
you’re able to just read the data that
are relevant to serve for your query
and efficiently index these data as well
so that you can quickly store all of the
data points. When queries come in, we

want to be able to efficiently look up
where the data are and then prune out
the tiles that aren’t relevant to serving
that query. Being able to distribute
queries is also important to keep the

query performance good as the data
set grows. With the time-series use
case, we know that as time goes on,
we’ll continue growing that data set,

so being able to massively scale out
data queries over time is important.

What difficulties does scale pres-
ent to ingestion? If we have many

data sources, a l l h igh volume,
and the total amount of data being
ingested is huge, how can we cope
with that?

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
• 499—Render’s Uma Chingunde talks with host Jeremy Jung and

compares building a PaaS with her previous experience running the
Stripe Compute team.

• 498—Host Felienne and James Socol of Policygenius discuss continu-
ous integration and continuous delivery, and ways to test and deploy
software quickly and easily.

• 497—Richard L. Sites talks about his new book Understanding
Software Dynamics with host Philip Winston.

UPCOMING EPISODES
• Sergey Gorbunov talks to host Philip Winston about blockchain

interoperability.
• Omer Katz and host Nikhil Krishna discuss distributed task queues

using Celery.
• Host Brijesh Ammanath talks to Bob Ducharme regarding creating

technical documentation for software projects.

We do have to deal with this case,
and we have a manner of performing
batching and load balancing with our
ingestion service.

SOFTWARE ENGINEERING RADIO

128 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

You can’t handle that volume of data
without distributing the load somehow.
We distribute the load by cutting more
into our 2D space of tiles. If we’re see-
ing a lot of increased traffic to these tiles,
we will further split them down so we
can have more resources working on in-
gestion for that table. Similarly, if we see
workload decrease to the table, we can
merge tiles back together so we don’t
have resources not working on a lot of
incoming data. Time-series data are usu-
ally immutable, but sometimes they are

not. We need to support data updates
and data deduplication if we are re-
ceiving duplicate data points and also
out-of-order data or even data that could
be really old. Time-series data often do
come in like this. That allows us to scale
our system and not have a lot of conflicts
when multiple different hosts are getting
the exact same data points that they
need to ingest. But we do have to deal
with this case, and we have a manner of
performing batching and load balanc-
ing with our ingestion service.

 What trends have you noticed in time-
series databases? Where do you see
things evolving in the next three to
five years?

We’ll see a lot of evolution in time-
series databases just in their growth
and adoption. We’re just getting
started in terms of usage of time-series
databases and the functionality that
they can serve. So much data out there
across so many industries are time
series in nature. Most data you’re
collecting have some sort of time ele-
ment such that you tend to not care
so much about the current state of
things as you do about historical
data. As machine learning expands,
and we make devices and different
operators smarter, giving them in-
sight into these historical data is re-
ally important. Also, as time-series
databases become increasingly used,
we’ll see more use cases across differ-
ent industries.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2022 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

ABOUT THE AUTHOR

PHILIP WINSTON is a software engineering consultant and contractor

through his company, Tobeva Software, Winchester, Virginia, 22602, USA.

Contact him at philip@tobeva.com.

